Four experiments examined whether verbalization can interfere with insight problem solving. In Experiment 1, Ss were interrupted during problem solving and asked either to verbalize their strategies (retrospective verbalization) or engage in an unrelated activity (control). Ss in the retrospective verbalization condition were significantly less successful than control subjects at solving the problems. Experiment 2 replicated the finding of Experiment 1 and demonstrated that the control Ss' advantage was not due to any beneficial effect of the interruption. In Experiment 3, concurrent, nondirective verbalization impaired the solving of insight problems but had no effect on noninsight problems. In Experiment 4, the effect of concurrent verbalization on insight was maintained even when Ss were encouraged to consider alternative approaches. Together, these findings are consistent with the hypothesis that verbalization can result in the disruption of nonreportable processes that are critical to achieving insight solutions.Although thought processes often closely correspond to the contents of inner speech (e.g., Ericsson & Simon, 1980, 1984Sokolov, 1972;Vygotsky, 1934Vygotsky, /1989, certain thoughts have a distinctly nonverbal character. A long tradition of scholars have suggested that creative thoughts, and in particular "insights" (problem solutions that occur unexpectedly following an impasse), are distinct from language processes (e.g.
It is well-known that reducing the contrast of a slow moving stimulus reduces its apparent speed. [Thompson, P. (1982). Perceived rate of movement depends on contrast. Vision Research, 22, 377-380.] report of this finding also suggested that at speeds above 8 cycles/s reducing contrast increased perceived speed. However in a later report, Stone and Thompson (1992), using a more rigorous, forced-choice procedure, failed to collect reliable data at these higher speeds. Here, we confirm that faster moving stimuli can appear to move faster than their true speed at low contrasts and we propose a physiologically plausible ratio model that unlike recent Bayesian models (e.g. Weiss, Y., Simoncelli, E. P., & Adelson, E. H. (2002). Motion illusions as optimal percepts. Nature Neuroscience, 5, 598-604) can account well for the results.
Body size misperception is common amongst the general public and is a core component of eating disorders and related conditions. While perennial media exposure to the “thin ideal” has been blamed for this misperception, relatively little research has examined visual adaptation as a potential mechanism. We examined the extent to which the bodies of “self” and “other” are processed by common or separate mechanisms in young women. Using a contingent adaptation paradigm, experiment 1 gave participants prolonged exposure to images both of the self and of another female that had been distorted in opposite directions (e.g., expanded other/contracted self), and assessed the aftereffects using test images both of the self and other. The directions of the resulting perceptual biases were contingent on the test stimulus, establishing at least some separation between the mechanisms encoding these body types. Experiment 2 used a cross adaptation paradigm to further investigate the extent to which these mechanisms are independent. Participants were adapted either to expanded or to contracted images of their own body or that of another female. While adaptation effects were largest when adapting and testing with the same body type, confirming the separation of mechanisms reported in experiment 1, substantial misperceptions were also demonstrated for cross adaptation conditions, demonstrating a degree of overlap in the encoding of self and other. In addition, the evidence of misperception of one's own body following exposure to “thin” and to “fat” others demonstrates the viability of visual adaptation as a model of body image disturbance both for those who underestimate and those who overestimate their own size.
The dominant evolutionary theory of physical attraction posits that attractiveness reflects physiological health, and attraction is a mechanism for identifying a healthy mate. Previous studies have found that perceptions of the healthiest body mass index (weight scaled for height; BMI) for women are close to healthy BMI guidelines, while the most attractive BMI is significantly lower, possibly pointing to an influence of sociocultural factors in determining attractive BMI. However, less is known about ideal body size for men. Further, research has not addressed the role of body fat and muscle, which have distinct relationships with health and are conflated in BMI, in determining perceived health and attractiveness. Here, we hypothesised that, if attractiveness reflects physiological health, the most attractive and healthy appearing body composition should be in line with physiologically healthy body composition. Thirty female and 33 male observers were instructed to manipulate 15 female and 15 male body images in terms of their fat and muscle to optimise perceived health and, separately, attractiveness. Observers were unaware that they were manipulating the muscle and fat content of bodies. The most attractive apparent fat mass for female bodies was significantly lower than the healthiest appearing fat mass (and was lower than the physiologically healthy range), with no significant difference for muscle mass. The optimal fat and muscle mass for men’s bodies was in line with the healthy range. Male observers preferred a significantly lower overall male body mass than did female observers. While the body fat and muscle associated with healthy and attractive appearance is broadly in line with physiologically healthy values, deviations from this pattern suggest that future research should examine a possible role for internalization of body ideals in influencing perceptions of attractive body composition, particularly in women.
Although research addressing body size misperception has focused on socio-cognitive processes, such as internalization of the “ideal” images of bodies in the media, the perceptual basis of this phenomenon remains largely unknown. Further, most studies focus on body size per se even though this depends on both fat and muscle mass – variables that have very different relationships with health. We tested visual adaptation as a mechanism for inducing body fat and muscle mass misperception, and assessed whether these two dimensions of body space are processed independently. Observers manipulated the apparent fat and muscle mass of bodies to make them appear “normal” before and after inspecting images from one of four adaptation conditions (increased fat/decreased fat/increased muscle/decreased muscle). Exposure resulted in a shift in the point of subjective normality in the direction of the adapting images along the relevant (fat or muscle) axis, suggesting that the neural mechanisms involved in body fat and muscle perception are independent. This supports the viability of adaptation as a model of real-world body size misperception, and extends its applicability to clinical manifestations of body image disturbance that entail not only preoccupation with thinness (e.g., anorexia nervosa) but also with muscularity (e.g., muscle dysmorphia).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.