A gas chromatography-mass spectrometry (GC-MS) method was used for the quantitative confirmation of phosphine residues in stored products and processed foods. An established extraction technique was utilized for the preparation of headspace samples, which were analyzed by GC-MS and gas chromatography-nitrogen-phosphorus detection (GC-NPD). Wheat, oats, maize, white rice, brown rice, cornflakes, tortilla cornchips, groundnuts, and raisins were validated, showing excellent agreement between detectors when spiked at levels equivalent to 0.001 and 0.01 mg/kg phosphine and for samples containing incurred residues. The GC-MS method was reproducible and accurate when compared to the GC-NPD method and allowed five samples to be quantified in a working day. Subambient GC-MS oven temperatures were most suitable for phosphine residues ranging from 0.001 to 0.005 mg/kg, and a GC oven temperature of 100 degrees C was appropriate for residues >0.005 mg/kg. The method was sufficiently robust to be evaluated for other similar commodities as the need arises.
A rapid screening method for detecting low levels of tetrachloroethylene (perchloroethylene, PCE) in olive oils has been developed using headspace capillary gas chromatography. Modification of this method allows quantitative results to be obtained down to 0.001 mg kg-1. Results obtained show that olive oil samples received in this laboratory over a two year period have not contained PCE residues in excess of the European Commission guidelines.
An automated gas chromatographic headspace method capable of detecting methyl bromide (MB) down to 0.01 mg kg−1 has been developed and evaluated. The method is suitable for analysing cereals, nuts, seeds and dried fruit. Commodities are extracted with solvent and MB present is derivatised to methyl iodide (MI) which is determined by automated headspace gas chromatography. Results from the method described are compared with those using an established solvent extraction method and show good quantitative agreement. The analytical conditions recommended are likely to be suitable for examination of other commodities for MB residues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.