Nisin is a natural bacteriocin that exhibits good antibacterial activity against Gram-positive bacteria. It has good solubility, stability, and activity under acidic conditions, but it becomes less soluble, stable, and active when the solution pH exceeds 6.0, which severely restricted the industrial application range of nisin as antibacterial agent. In this study, we investigated the potential of complexing nisin with a cyclodextrin carboxylate, succinic acid-β-cyclodextrin (SACD), to overcome the disadvantages. Strong hydrogen bonding was shown between the nisin and SACD, promoting the formation of nisin-SACD complexes. These complexes exhibited good solubility under neutral and alkaline conditions, and good stability after being held at high pH values during processing with high-steam sterilization. Moreover, the nisin-SACD complexes displayed significantly improved antibacterial activity against model Gram-positive bacteria (S. aureus). This study shows that complexation can improve the efficacy of nisin under neutral and alkaline situations, which may greatly broaden its application range in food, medical, and other industries.
Nisin is a natural bacteriocin that is claimed to exhibit good antibacterial activity against Gram-positive bacteria. It has good solubility, stability, and activity under acidic conditions, but it becomes less soluble, stable, and active when the solution pH exceeds 6.0. In this study, we investigated the potential of complexing nisin with a cyclodextrin carboxylate, succinic acid-β-cyclodextrin (SACD), to overcome the disadvantages. Strong hydrogen bonding was shown between the nisin and SACD, promoting the formation of nisin-SACD complexes. These complexes exhibited good solubility under neutral and alkaline conditions, and good stability after being held at high pH values during processing with high-steam sterilization. Moreover, the nisin-SACD complexes displayed significantly improved antibacterial activity against model Gram-positive bacteria (S. aureus). This study shows that complexation can improve the efficacy of nisin under neutral and alkaline situations, which may greatly broaden its application range in the food, medical, and other industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.