The longevity of a honeybee colony is far more significant than the lifespan of an individual honeybee, a social insect. The longevity of a honeybee colony is integral to the fate of the colony. We have proposed a new mathematical model to estimate the apparent longevity defined in the upper limit of an integral equation. The apparent longevity can be determined only from the numbers of adult bees and capped brood. By applying the mathematical model to a honeybee colony in Japan, seasonal changes in apparent longevity were estimated in three long-term field experiments. Three apparent longevities showed very similar season-changes to one another, increasing from early autumn, reaching a maximum at the end of overwintering and falling approximately plumb down after overwintering. The influence of measurement errors in the numbers of adult bees and capped brood on the apparent longevity was investigated.
Four long-term field experiments in mid-west Japan (Shika) made it clear that extinction of colonies exposed to neonicotinoid was much higher than for colonies exposed to organophosphates. The incidence of hive death for of organophosphate-exposed and control (pesticide-free) colonies was similar. We conducted a field experiment in Maui for 271 days using the same pesticides (dinotefuran: 0.2 ppm, clothianidin: 0.08 ppm, fenitrothion: 1 ppm) as used in Shika with the honeybee, Apis mellifera, colonies without mites. Numbers of adult bees, capped brood, mites and other hive parameters were accurately counted on photographs of combs and on the inside of the hives. All six neonicotinoid (dinotefuran & clothianidin)-exposed colonies failed during the experiment. One of three organophosphate (fenitrothion)-exposed colonies and one of the three control colonies also failed. The findings from Maui, where colonies displayed no mites, provides evidence from Shika, with mites, that neonicotinoids are more hazardous to honeybee colonies than organophosphates. The apparent longevity of honeybee colonies on Maui was estimated by numbers of adult bees and capped brood using a mathematical model previously proposed. Seasonal changes in longevity on Maui differ greatly from changes at Shika, the latter showing distinct seasonal variation. Longevity on Maui remains nearly constant throughout the year with wide variations. At Shika, it increases drastically in winter, by six- to ten fold more than the other seasons. Differences seem to depend on the existence of cold winters and the length of flowering seasons. In a perpetually hospitable environment, small changes in conditions can be sensitively reflected in apparent longevity. Examining wide variations in apparent longevity that are seemingly incoherent, we recognized several differences in apparent longevity between neonicotinoid-exposed and organophosphate-exposed colonies: The colony that failed in after organophosphate-exposure colony group exhibited the longest apparent longevity and the fewest number of newly capped brood, as also was the case in control colonies. Extended longevity when few brood are newly produced is reasonable to maintain the colony from a physiological point of view. Extension of apparent longevity is not seen in neonicotinoid-exposed colonies when the number of newly capped brood is fewer. This finding suggests that neonicotinoid pesticides may inhibit normal apian physiology.
Summary Neonicotinoides are persistent and highly toxic pesticides that have become popular instead of organophosphates, being suspected to be a trigger of massive disappearance of bees that raises concern in the world. The evaluation of the long-term influence for a whole colony in the natural environment is, however, not established yet. In this paper, we conducted a long-term field experiment and found different impacts on honeybee colonies (Apis mellifera) in an apiary between the neonicotinoid dinotefuran and the organophosphate fenitrothion even though whose concentrations in sugar syrup provided for bees were adjusted to have nearly equal short-term effects on a honeybee based on the median lethal dose (LD50) as well as the insecticidal activity to exterminate stinkbugs. The colony with administration of dinotefran (dinotefuran colony) became extinct in 26 days, while the colony with administration of fenitrothion (fenitrothion colony) survived the administration for the same period. Furthermore, the fenitrothion colony succeeded to be alive for more than 293 days after administration, and also succeeded an overwintering, which indicates that colonies exposed to fenitrothion can recover after the exposure. Meanwhile, the dinotefuran colony became extinct even though the intake of dinotefuran was estimated to be comparable with that of fenitrothion in terms of the LD50 of a honeybee. Moreover, the colonies in our previous long-term experiments where dinotefuran with higher concentration were administered only for first few days (Yamada et al., 2012) became extinct in 104 days and 162 days, respectively. From these results, we speculate that colonies exposed to dinotefuran hardly recover from the damage because dinotefuran is much more persistent than fenitrothion and toxic foods stored in cells can affect a colony in a long period.
Summary We have previously examined the impact of neonicotinoid pesticides, dinotefuran and clothianidin, on honeybee Apis mellifera colonies in long-term field experiments when they were simultaneously administered through both vehicles of sugar syrup and pollen paste (Yamada et al., 2012). The independent effect of a pesticide through two vehicles has not been studied in our previous work. In this paper, we investigated the independent impact of dinotefuran through each of the two vehicles. We confirmed that dinotefuran intake per bee until colony extinction due to administration through pollen paste (DF-TIPP) was roughly one-fifth as much as that through sugar syrup (DF-TISS). The intake was largely independent of dinotefuran concentration. We considered the possibility of DF-TIPP per bee as an indicator to assess the impact of persistent pesticide on a honeybee colony in a practical apiary. This work has replicated the finding that a honeybee colony has dwindled away to nothing after assuming an aspect of a colony collapse disorder (CCD) by administration of the neonicotinoids dinotefuran and clothianidin in our previous work, regardless of the vehicles. In addition, a failure in wintering was observed in case of administration of dinotefuran with the lowest concentration in this work even if the colony appeared vigorous before winter. We can infer that a CCD and a failure in wintering may have the same roots of chronic toxicity of neonicotinoids under conditions of low concentrations due to the persistency and high toxicity which are characteristic of them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.