Activins and inhibins, members of the transforming growth factor-beta superfamily, are involved in diverse physiological and developmental processes. We have previously shown that mice deficient in alpha-inhibin develop gonadal sex cord-stromal tumors at an early age. The tumor development is rapidly followed by a wasting syndrome that includes severe weight loss, hepatocellular necrosis around the central vein, and depletion of the parietal cells in the glandular stomach. The liver histology in inhibin-deficient mice is similar to the pathological effects of short-term treatment of rats and mice with recombinant activin A. Consistent with these findings, we have shown that the gonadal tumors in the inhibin-deficient mice secrete high levels of activins. In addition, Northern blot analysis has localized activin receptor type II (ActRII) to the liver. Based on these studies, we postulated that tumor-produced activins act through ActRII to cause the wasting syndrome in inhibin-deficient mice. To test this hypothesis and determine the significance of elevated levels of activin signaling through ActRII in vivo, we generated compound homozygous mutant mice deficient in both alpha-inhibin and ActRII. Despite the continued development of gonadal sex cord-stromal tumors and elevated serum levels of activin A and B, the compound homozygous mutant mice suffered no unusual weight loss, and the stomachs and livers of the majority of the mice were histologically normal. These results demonstrate that increased levels of activin signaling through ActRII in hepatocytes and the glandular stomach causes the hepatocellular necrosis and depletion of parietal cells in the glandular stomach as well as the severe weight loss in vivo.
Activins are TGFbeta family members known to mediate a variety of developmental events. We examined the effects of activins on the self-renewing epithelial lineages present in gastric units of the adult mouse stomach. These lineages are descended from multipotent stem cells located in the midportion of each unit. The stem cell and its immediate descendants can be identified by their morphological features. Studies of knockout mice lacking activins A or B, and/or activin type II receptors (ActRII) revealed that ActRII-mediated signaling is not required for normal gastric epithelial morphogenesis or homeostasis. Mice homozygous for a null allele of the alpha-inhibin gene (inha[m1/m1]) develop gonadal sex cord stromal tumors that secrete large amounts of activins A and B. Analysis of inha(m1/m1) mice, with or without gonads, established that supraphysiological levels of activins block differentiation of preparietal to acid-producing parietal cells, differentiation of neck cells to pepsinogen-producing zymogenic cells, and terminal differentiation of mucus-producing pit cells. ActRII mRNA is normally present in pit, parietal, and zymogenic cells. inha(m1/m1)actRII(m1/m1) compound homozygotes develop activin-secreting gonadal tumors but have no abnormalities in their gastric epithelium, indicating that persistent stimulation of ActRII-dependent signaling pathways produces pleiotrophic effects on gastric epithelial differentiation. When a lineage-specific promoter is used to ablate mature parietal cells with an attenuated diphtheria toxin A fragment in transgenic mice, there is increased proliferation of the multipotent gastric stem cell and its committed daughters and subsequent development of gastric neoplasia. Parietal cell loss in inha(m1/m1) mice is not associated with this proliferative response. These different responses to parietal cell loss suggest that stimulation of ActRII-dependent signaling pathways in inha(m1/m1) animals affects the proliferative activity of the stem cell and its immediate descendents. This finding may have therapeutic significance.
Mammalian hexokinase types one and three (HK1 and HK3) are 100 kDa isozymes that phosphorylate glucose to glucose-6-phosphate. HK1 is present in most tissues but is especially prominent in brain and kidney. HK3 is less well studied, but may be most prominent in the spleen and lymphocytes. In this study, we determined the ontogeny of the expression of these isoforms in the rat. Using immunohistochemistry, we identified HK1 and HK3 immunoreactivity in the brain, heart, kidney, liver, skeletal muscle and spleen from gestational day 14 (E14) to 45 days after birth (P45). With the exception of the liver and spleen, we observed a similar age- and cell-dependent staining pattern for both isoforms in all organs studied. The brain and spleen were analyzed in more detail to identify specific regions of immunoreactivity during maturation. A transient expression of HK1 and HK3 was noted in the cell bodies of mature neurons, including layers V and VI of the cerebral cortex and the cerebellar Purkinje cells followed by localization to the white matter of the cerebrum and cerebellum. In the spleen, HK3 immunoreactivity was detected postnatally and appeared to track with the infiltration of B cells. Our demonstration of changing patterns of immunoreactivity for HK1 and HK3 in fetal and postnatal organs suggests that these HK isoforms are involved the process of development. We speculate that HK1 and HK3 share a complex interaction during development of these organs and regulate glucose metabolism at multiple levels during development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.