SUMMARY1. Sympathetic nerve discharge (SND) of three postganglionic nerves with different functions and anatomical locations was simultaneously recorded at rest and during severe cerebral ischaemia (Cushing reaction). The three nerves, controlling the heart (inferior cardiac nerve), visceral (renal nerve) and skeletal muscle circulation (vertebral nerve), were selected with the assumption that their activity pattern will represent the differential central autonomic command to the major players of the circulatory response to cerebral ischaemia.2. Changes in the power density spectra of the nerve signals, and in the pairwise coherence functions, elicited by the cerebral ischaemia, were evaluated separately for the rhythmic (R-SND, i.e. between 0 and 6 Hz) and high-frequency (HF-SND, i.e. between 12 and 100 Hz) components of the nerve signals.3. The sympathetic nerve response to cerebral ischaemia developed in two phases. Phase 1 was a massive R-SND reaction and phase 2 was characterized by SND desynchronization and by the emergence of HF-SND. The power of HF-SND occupied a wide band between 12 and 80 Hz with maximum between 20 and 30 Hz. All three nerves were involved in the Cushing response but the magnitude and character of the reactions were specific for each nerve. In the cardiac nerve, the power of the rhythmic component of the discharge increased almost twice the control and remained dominant during the whole reaction, strongly modulating HF-SND during the second phase. In the vasomotor nerves, R-SND was suppressed during phase 2 and HF-SND occupied 65 % of the total power of the signal. Near equal Rto HF-SND proportions, however, were reached on different activity levels in renal and vertebral nerves. Whereas total renal SND did not change, the power of the vertebral SND increased more than twice. In addition, desynchronization in the vertebral SND was preceded by a massive R-SND reaction during phase 1, which was missing in the renal nerve.4. For all possible nerve pairs, R-SND was highly coherent before the reaction and remained so during intracranial pressure elevation, regardless of the direction and magnitude of the changes in absolute and/or relative power of this component in different nerves. On the other hand, HF-SND never correlated between any of the MS 1149 B. KOCSIS AND OTHERS nerve pairs indicating that this component in each nerve originated from specific sources of regional sympathetic activity.5. We conclude that the sympathetic nervous system is capable of generating different types of activity, including rhythmic and desynchronized discharges, and these activity patterns play an important role in generating differential sympathetic nerve response to cerebral ischaemia. Different sympathetic networks controlling different cardiovascular effectors, due to their specific properties (i.e. unequal capability of synchronization or desynchronization of the discharge), may convert the general excitatory effect of the cerebral ischaemia into specific discharge patterns with characteristic involvem...
It has been shown earlier using sympathetic reflexes and anatomic techniques that preganglionic neurons controlling different effectors occupy wide and overlapping ranges of adjacent segments in the spinal cord (cardiac: T1–T7, vertebral: T2–T8). Because, however, the majority of preganglionic neurons are silent at resting states, the present study was designed to estimate the segmental map of subsets of these neurons including only those active at rest using simultaneous recordings from the inferior cardiac and vertebral nerves, under chloralose-urethan or urethan anesthesia. In 22 cats, thoracic white rami T1–T8 were cut in a sequential manner. Three-minute-long data segments were recorded between sectionings and analyzed in the frequency domain using the fast Fourier transform. We found that cardiac and vertebral active maps involved segments T3–T5 and T4–T8, respectively. In individual experiments, however, most of the power of rhythmic activity originated from only one or two segments and the dominant segments for the two nerves never overlapped. Moreover, the separation between dominant segments generating cardiac and vertebral nerve discharges was wider and the distribution of tonically active preganglionic neurons projecting to each nerve was narrower under urethan than chloralose-urethan anesthesia. We conclude that the proportion of active to quiescent preganglionic neurons regulating cardiac and vertebral nerve discharges varies from spinal segment to segment and that active neurons projecting to these nerves are nonoverlapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.