Endometriosis is a common gynecological disease found in approximately 10% of reproductive-age women. Gene expression analysis has been performed to explore alterations in gene expression associated with endometriosis; however, the underlying transcription factors (TFs) governing such expression changes have not been investigated in a systematic way. In this study, we propose a method to integrate gene expression with TF binding data and protein-protein interactions to construct an integrated regulatory network (IRN) for endometriosis. The IRN has shown that the most regulated gene in endometriosis is RUNX1, which is targeted by 14 of 26 TFs also involved in endometriosis. Using 2 published cohorts, GSE7305 (Hover, n = 20) and GSE7307 (Roth, n = 36) from the Gene Expression Omnibus database, we identified a network of TFs, which bind to target genes that are differentially expressed in endometriosis. Enrichment analysis based on the hypergeometric distribution allowed us to predict the TFs involved in endometriosis (n = 40). This included known TFs such as androgen receptor (AR) and critical factors in the pathology of endometriosis, estrogen receptor α, and estrogen receptor β. We also identified several new ones from which we selected FOXA2 and TFAP2C, and their regulation was confirmed by quantitative real-time polymerase chain reaction and immunohistochemistry (IHC). Further, our analysis revealed that the function of AR and p53 in endometriosis is regulated by posttranscriptional changes and not by differential gene expression. Our integrative analysis provides new insights into the regulatory programs involved in endometriosis.
Tremendous efforts have been made to improve diagnosis and treatment of COVID-19, but knowledge on long-term complications is limited. In particular, a large portion of survivors has respiratory complications, but currently, experienced radiologists and state-of-the-art artificial intelligence systems are not able to detect many abnormalities from follow-up computerized tomography (CT) scans of COVID-19 survivors. Here we propose Deep-LungParenchyma-Enhancing (DLPE), a computer-aided detection (CAD) method for detecting and quantifying pulmonary parenchyma lesions on chest CT. Through proposing a number of deep-learning-based segmentation models and assembling them in an interpretable manner, DLPE removes irrelevant tissues from the perspective of pulmonary parenchyma, and calculates the scan-level optimal window, which considerably enhances parenchyma lesions relative to the lung window. Aided by DLPE, radiologists discovered novel and interpretable lesions from COVID-19 inpatients and survivors, which were previously invisible under the lung window. Based on DLPE, we removed the scan-level bias of CT scans, and then extracted precise radiomics from such novel lesions. We further demonstrated that these radiomics have strong predictive power for key COVID-19 clinical metrics on an inpatient cohort of 1,193 CT scans and for sequelae on a survivor cohort of 219 CT scans. Our work sheds light on the development of interpretable medical artificial intelligence and showcases how artificial intelligence can discover medical findings that are beyond sight.
Background: Coronary artery disease (CAD) is a type of cardiovascular disease that greatly hurts the health of human beings. Diabetic status is one of the largest clinical factors affecting CAD-associated gene expression changes. Most of the studies focus on diabetic patients, whereas few have been done for non-diabetic patients. Since the pathophysiological processes may vary among these patients, we cannot simply follow the standard based on the data from diabetic patients. Therefore, the prognostic and predictive diagnostic biomarkers for CAD in non-diabetic patient need to be fully recognized. Materials and Methods: To screen out candidate genes associated with CAD in non-diabetic patients, weighted gene co-expression network analysis (WGCNA) was constructed to conduct an analysis of microarray expression profiling in patients with CAD. First, the microarray data GSE20680 and GSE20681 were downloaded from NCBI. We constructed co-expression modules via WGCNA after excluding the diabetic patients. As a result, 18 co-expression modules were screened out, including 1,225 differentially expressed genes (DEGs) that were obtained from 152 patients (luminal stenosis ≥50% in at least one major vessel) and 170 patients (stenosis of <50%). Subsequently, a Pearson's correlation analysis was conducted between the modules and clinical traits. Then, a functional enrichment analysis was conducted, and we used gene network analysis to reveal hub genes. Last, we validated the hub genes with peripheral blood samples in an independent patient cohort using RT-qPCR. Results: The results showed that the midnight blue module and the yellow module played vital roles in the pathogenesis of CAD in non-diabetic patients. Additionally, CD40, F11R, TNRC18, and calcium/calmodulin-dependent protein kinase
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.