Abstract-Increase in system capacity and data rates can be achieved efficiently in a wireless system by getting the transmitter and receiver closer to each other. Femtocells deployed in the macrocell significantly improve the indoor coverage and provide better user experience. The femtocell base station called as Femtocell Access Point (FAP) is fully user deployed and hence reduces the infrastructure, maintenance and operational cost of the operator while at the same time providing good Quality of Service (QoS) to the end user and high network capacity gains. However, the mass deployment of femtocell faces a number of challenges, among which interference management is of much importance, as the fundamental limits of capacity and achievable data rates mainly depends on the interference faced by the femtocell network. To cope with the technical challenges including interference management faced by the femtocells, researchers have suggested a variety of solutions. These solutions vary depending on the physical layer technology and the specific scenarios considered. Furthermore, the cognitive capabilities, as a functionality of femtocell have also been discussed in this survey.This article summarises the main concepts of femtocells that are covered in literature and the major challenges faced in its large scale deployment. The main challenge of interference management is discussed in detail with its types in femtocells and the solutions proposed over the years to manage interference have been summarised. In addition an overview of the current femtocell standardisation and the future research direction of femtocells have also been provided.
The main challenge for a cognitive radio is to detect the existence of primary users reliably in order to minimise the interference to licensed communications. Hence, spectrum sensing is a most important requirement of a cognitive radio. However, due to the channel uncertainties, local observations are not reliable and collaboration among users is required. Selection of fusion rule at a common receiver has a direct impact on the overall spectrum sensing performance. In this paper, optimisation of collaborative spectrum sensing in terms of optimum decision fusion is studied for hard and soft decision combining. It is concluded that for optimum fusion, the fusion centre must incorporate signal-to-noise ratio values of cognitive users and the channel conditions. A genetic algorithm-based weighted optimisation strategy is presented for the case of soft decision combining. Numerical results show that the proposed optimised collaborative spectrum sensing schemes give better spectrum sensing performance.
Abstract-Spectrum sensing for cognitive radio is challenging. In this letter, a spectrum sensing method based on quintiles of Order-Statistics is proposed. We derive the test statistic and evaluate the performance of the proposed method by Monte Carlo simulations. Simulation results show that order statistics based sensing considerably outperforms both energy detection and anderson darling based sensing in an Additive White Gaussian Noise (AWGN) channel; especially in a lower signal to noise ratio region.
Carrier aggregation has been introduced by 3rd Generation Partnership project (3GPP) in order to meet the IMT-Advanced requirements. Using carrier aggregation, multiple component carriers with a different bandwidth, dispersed within intra or inter bands can be simultaneously utilised to provide higher data rates, better coverage and lower latency resulting a better user experience. However, carrier aggregation functionality requires modification to the radio resource management function of the network. In this paper, we propose an efficient resource allocation and link adaptation algorithm to support carrier aggregation functionality for downlink 5G LTE-Advanced (LTE-A) network. We consider a non-guaranteed bit rate bearers (best effort traffic), which can be used for non realtime applications such as file downloads. Most of the existing work considered resource allocation, component carrier selection and link adaptation as separate problems. We define a joint radio resource management problem with carrier aggregation functionality and propose a sub-optimal solution with a low computational complexity. Simulation results show clearly that our algorithm outperforms state-of-the-art algorithms.
Dehydration and overhydration can help to improve medical implications on health. Therefore, it is vital to track the hydration level (HL) specifically in children, the elderly and patients with underlying medical conditions such as diabetes. Most of the current approaches to estimate the hydration level are not sufficient and require more in-depth research. Therefore, in this paper, we used the non-invasive wearable sensor for collecting the skin conductance data and employed different machine learning algorithms based on feature engineering to predict the hydration level of the human body in different body postures. The comparative experimental results demonstrated that the random forest with an accuracy of 91.3% achieved better performance as compared to other machine learning algorithms to predict the hydration state of human body. This study paves a way for further investigation in non-invasive proactive skin hydration detection which can help in the diagnosis of serious health conditions.
The atrial fibrillation (AF) is one of the most well-known cardiac arrhythmias in clinical practice, with a prevalence of 1–2% in the community, which can increase the risk of stroke and myocardial infarction. The detection of AF electrocardiogram (ECG) can improve the early detection of diagnosis. In this paper, we have further developed a framework for processing the ECG signal in order to determine the AF episodes. We have implemented machine learning and deep learning algorithms to detect AF. Moreover, the experimental results show that better performance can be achieved with long short-term memory (LSTM) as compared to other algorithms. The initial experimental results illustrate that the deep learning algorithms, such as LSTM and convolutional neural network (CNN), achieved better performance (10%) as compared to machine learning classifiers, such as support vectors, logistic regression, etc. This preliminary work can help clinicians in AF detection with high accuracy and less probability of errors, which can ultimately result in reduction in fatality rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.