Constant removal of sugars from the site of synthesis (i.e., leaves), in response to elevated sink (culm) demand, may perhaps prevent damping of photosynthesis, by sugar, and hence promote further sucrose accumulation in the culm. In this study, gibberellic acid (GA) induced nearly 42.3% enlargement in cell size and about 39.3% increase in internodal length (sink capacity), 177% escalation in reducing sugar level (sink strength), amplified the expression of sucrose-metabolizing enzymes (sink demand), viz., 7.5-fold for SAI, 4.5-fold for CWI, sixfold for SPS, all demonstrating facilitation of augmented sucrose accumulation in the culm. The GA-treated BO 91 cane (late maturing sugarcane variety) exhibited an elevated final sucrose concentration (40.54-41.6%) as compared to control (30.44-38.8%). The GA-sprayed cane of early maturing Co J64 also showed such a boost, but it was lost by the end of maturity, perhaps due to inversion and/or the less effective GA treatment. Thus, results demonstrated the role of GA in augmenting sucrose content of cane culm, possibly by influencing source-sink dynamics in sugarcane.
Sucrose synthesis/accumulation in sugarcane is a complex process involving many genes and regulatory sequences that control biochemical events in source-sink tissues. Among these, sucrose synthase (SuSy), sucrose phosphate synthase (SPS), soluble acid (SAI) and cell wall (CWI) invertases are important. Expression of these enzymes was compared in an early (CoJ64) and late (BO91) maturing sugarcane variety using end-point and qRT-PCR. Quantitative RT-PCR at four crop stages revealed high CWI expression in upper internodes of CoJ64, which declined significantly in both top and bottom internodes with maturity. In BO91, CWI expression was high in top and bottom internodes and declined significantly only in top internodes as the crop matured. Overall, CWI expression was higher in CoJ64 than in BO91. During crop growth, there was no significant change in SPS expression in bottom internodes in CoJ64, whereas in BO91 it decreased significantly. Apart from a significant decrease in expression of SuSy in mature bottom internodes of BO91, there was no significant change. Similar SAI expression was observed with both end-point and RT-PCR, except for significantly increased expression in top internodes of CoJ64 with maturity. SAI, being a major sucrose hydrolysing enzyme, was also monitored with end-point PCR expression in internode tissues of CoJ64 and BO91, with higher expression of SAI in BO91 at early crop stages. Enzyme inhibitors, e.g. manganese chloride (Mn(++) ), significantly suppressed expression of SAI in both early- and late-maturing varieties. Present findings enhance understanding of critical sucrose metabolic gene expression in sugarcane varieties differing in content and time of peak sucrose storage. Thus, through employing these genes, improvement of sugarcane sucrose content is possible.
Sucrose synthesis/accumulation in sugarcane depends on the source-sink communication wherein source responds to sink demand for photoassimilate supply. Sucrose in stalk (sink) acts as signal, and sends feedback to restrain further synthesis of sucrose by regulating photosynthetic efficiency of leaves (source). Hence sucrose synthesis/accumulation is controlled by many genes and regulatory sequences including 3 invertases (SAI, CWI, NI), sucrose synthase (SuSy) and sucrose phosphate synthase (SPS). SPS and invertase play key role in enhancing sink strength which ultimately promotes greater sucrose accumulation in the sink tissues. In present study, a significant positive correlation was found between sucrose% of source and sink tissues which was greater in the top (R 2 = 0.679) than middle (R 2 = 0.580) and bottom (R 2 = 0.518) internodes, depicting that sucrose accumulation in the stalk bears a direct relation with sucrose translocation efficiency from source. Results indicated an increased sucrose% with maturity, while reducing sugar content decreased with crop growth. qRT-PCR results exhibited an elevated expression of invertase in immature sink tissues depicting increased sink requirement, which declined with maturity. Similarly, increased PEP carboxylase gene expression as observed supported the fact that higher sink demand results in enhanced photosynthetic rate and thus influences the source activity. SPS was found active at initial stage of cane development indicating its role in sucrose synthesis. Thus by studying expression patterns of the different genes both, in source and sink tissues, a better understanding of the sucrose accumulation pathway in sugarcane is possible, which in turn can help in elucidating ways to enhance sucrose concentration in sink.
Despite the wealth of information regarding genetics of the causative parasite and experimental immunology of the cutaneous leishmaniasis, there is currently no licensed vaccine against it. In the current study, a two-level data mining strategy was employed, to screen the Leishmania major genome for promising vaccine candidates. First, we screened a set of 25 potential antigens from 8312 protein coding sequences, based on presence of signal peptides, GPI anchors, and consensus antigenicity predictions. Second, we conducted a comprehensive immunogenic analysis of the 25 antigens based on epitopes predicted by NetCTL tool. Interestingly, results revealed that candidate antigen number 1 (LmjF.03.0550) had greater number of potential T cell epitopes, as compared to five well-characterized control antigens (CSP-Plasmodium falciparum, M1 and NP-Influenza A virus, core protein-Hepatitis B virus, and PSTA1-Mycobacterium tuberculosis). In order to determine an optimal set of epitopes among the highest scoring predicted epitopes, the OptiTope tool was employed for populations susceptible to cutaneous leishmaniasis. The epitope (127SLWSLLAGV) from antigen number 1, found to bind with the most prevalent allele HLA-A⁎0201 (25% frequency in Southwest Asia), was predicted as most immunogenic for all the target populations. Thus, our study reasserts the potential of genome-wide screening of pathogen antigens and epitopes, for identification of promising vaccine candidates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.