Micro-nano composite material was prepared to adsorb Hg(II) ions via the co-precipitation method. Oyster shell (OS), Fe3O4 nanoparticles, and humic acid (HA) were used as the raw materials. The adhesion of nanoparticles to OS displayed by scanning electron microscopy (SEM), the appearance of the (311) plane of standard Fe3O4 derived from X-ray diffraction (XRD), and the transformation of pore sizes to 50 nm and 20 μm by mercury intrusion porosimetry (MIP) jointly revealed the successful grafting of HA-functionalized Fe3O4 onto the oyster shell surface. The vibrating sample magnetometer (VSM) results showed superparamagnetic properties of the novel adsorbent. The adsorption mechanism was investigated based on X-ray photoelectron spectroscopy (XPS) techniques, which showed the process of physicochemical adsorption while mercury was adsorbed as Hg(II). The effects of pH (3–7), initial solution concentration (2.5–30 mg·L−1), and contact time (0–5 h) on the adsorption of Hg(II) ions were studied in detail. The experimental data were well fitted to the Langmuir isotherm equation (R2 = 0.991) and were shown to follow a pseudo-second-order reaction model (R2 = 0.998). The maximum adsorption capacity of Hg(II) was shown to be 141.57 mg·g−1. In addition, this new adsorbent exhibited excellent selectivity.
Nowadays, microplastics (MPs) exist widely in the marine. The surface has strong adsorption capacity for antibiotics in natural environments, and the cytotoxicity of complex are poorly understood. In the study, 500 nm polystyrene (PS-MPs) and 60 nm nanoplastics (PS-NPs) were synthesized. The adsorption of PS to tetracycline (TC) was studied and their toxicity to gastric cancer cells (AGS) was researched. The adsorption experimental results show that PS absorbing capacity increased with increasing TC concentrations. The defense mechanism results show that 60 nm PS-NPs, 500 nm PS-MPs and their complex induce different damage to AGS cells. Furthermore, 600 mg/L PS-NPs and PS-MPs decline cell viability, induce oxidation stress and cause apoptosis. There is more serious damage of 60 nm PS-NPs than 500 nm PS-MPs in cell viability and intracellular reactive oxygen species (ROS). DNA are also damaged by 60 nm PS-NPs and PS-TC NPs, 500 nm PS-MPs and PS-TC MPs, and 60 nm PS-NPs damage DNA more serious than 500 nm PS-MPs. Moreover, 60 nm PS-NPs and PS-TC NPs seem to promote bcl-2 associated X protein (Bax) overexpression. All treatments provided us with evidence on how PS-NPs, PS-MPs and their compounds damaged AGS cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.