The United Nations and the U.S. Environmental Protection Agency have identified a variety of chlorinated aromatics that constitute a significant health and environmental risk as "priority organic pollutants," the socalled "dirty dozen." Microbes have evolved the ability to utilize chlorinated aromatics as terminal electron acceptors in an energy-generating process called dehalorespiration. In this process, a reductive dehalogenase (CprA), couples the oxidation of an electron donor to the reductive elimination of chloride. We have characterized the B 12 and iron-sulfur cluster-containing 3-chloro-4-hydroxybenzoate reductive dehalogenase from Desulfitobacterium chlororespirans. By defining the substrate and inhibitor specificity for the dehalogenase, the enzyme was found to require an hydroxyl group ortho to the halide. Inhibition studies indicate that the hydroxyl group is required for substrate binding. The carboxyl group can be replaced by other functionalities, e.g. acetyl or halide groups, ortho or meta to the chloride to be eliminated. The purified D. chlororespirans enzyme could dechlorinate an hydroxylated PCB (3,3,5,5-tetrachloro-4,4-biphenyldiol) at a rate about 1% of that with 3-chloro-4-hydroxybenzoate. Solvent deuterium isotope effect studies indicate that transfer of a single proton is partially rate-limiting in the dehalogenation reaction.
ECAR-LANS, the recombinant L-asparaginase fromErwinia carotovora, is a prospective therapeutic enzyme for leukaemia treatment. An efficient and economical scheme was developed for the purification, cloning and expression in Eschericha coli of ECAR-LANS. More than 90 % purity, complemented with 72 % active enzyme recovery, was achieved with a single chromatographic purification step. The activity of purified L-asparaginase was 630 i.u./mg. The ECAR-LANS K m value was 98 × 10 −6 M for the main physiological substrate L-Asn and 3400 × 10 −6 M for L-Gln. ECAR-LANS was found to have low relative glutaminase activity (1.2 %) at physiological concentrations of L-Asn and L-Gln in blood. Kinetic studies of ECAR-LANS showed that the recombinant asparaginase combined the main advantages of Erw. chrysanthemi and E. coli L-asparaginases II, currently used in the treatment of acute lymphoblastic leukaemia.
Bacterial l‐asparaginases are enzymes that catalyze the hydrolysis of l‐asparagine to aspartic acid. For the past 30 years, these enzymes have been used as therapeutic agents in the treatment of acute childhood lymphoblastic leukemia. Their intrinsic low‐rate glutaminase activity, however, causes serious side‐effects, including neurotoxicity, hepatitis, coagulopathy, and other dysfunctions. Erwinia carotovora asparaginase shows decreased glutaminase activity, so it is believed to have fewer side‐effects in leukemia therapy. To gain detailed insights into the properties of E. carotovora asparaginase, combined crystallographic, thermal stability and cytotoxic experiments were performed. The crystal structure of E. carotovoral‐asparaginase in the presence of l‐Asp was determined at 2.5 Å resolution and refined to an Rcryst of 19.2 (Rfree = 26.6%) with good stereochemistry. Cytotoxicity measurements revealed that E. carotovora asparaginase is 30 times less toxic than the Escherichia coli enzyme against human leukemia cell lines. Moreover, denaturing experiments showed that E. carotovora asparaginase has decreased thermodynamic stability as compared to the E. coli enzyme and is rapidly inactivated in the presence of urea. On the basis of these results, we propose that E. carotovora asparaginase has limited potential as an antileukemic drug, despite its promising low glutaminase activity. Our analysis may be applicable to the therapeutic evaluation of other asparaginases as well.
Bacterial l-asparaginases have been used as therapeutic agents in the treatment of acute childhood lymphoblastic leukaemia for over 30 y. However, their use is limited owing to the glutaminase activity of the administered enzymes, which results in serious side effects. In contrast, l-asparaginase from Erwinia carotovora exhibits low glutaminase activity at physiological concentrations of l-asparagine and l-glutamine in the blood. Recombinant Er. carotovora l-asparaginase was crystallized in the presence of l-glutamate by the hangingdrop vapour-diffusion method using 10 mg ml À1 purified enzyme, 16-18%(w/v) PEG 3350 and 0.2 M NaF. X-ray diffraction data were collected to 2.6 Å at 293 K using an in-house rotating-anode generator. The crystals belong to the monoclinic P2 1 space group, with unit-cell parameters a = 78.0, b = 112.3, c = 78.7 Å , = 101.9and a homotetramer in the crystallographic asymmetric unit. A molecular-replacement solution has been found and refinement is currently in progress. The crystal structure may provide leads towards proteinengineering efforts aimed at safer asparaginase administration in leukaemia treatment.
The l-asparaginases from Escherichia coli and Erwinia chrysanthemi are effective drugs that have been used in the treatment of acute childhood lymphoblastic leukaemia for over 30 years. However, despite their therapeutic potential, they can cause serious side effects as a consequence of their intrinsic glutaminase activity, which leads to l-glutamine depletion in the blood. Consequently, new asparaginases with low glutaminase activity, fewer side effects and high activity towards l-asparagine are highly desirable as better alternatives in cancer therapy. l-Asparaginase from Helicobacter pylori was overexpressed in E. coli and purified for structural studies. The enzyme was crystallized at pH 7.0 in the presence of 16-19%(w/v) PEG 4000 and 0.1 M magnesium formate. Data were collected to 1.6 Å resolution at 100 K from a single crystal at a synchrotron-radiation source. The crystals belong to space group I222, with unit-cell parameters a = 63.6, b = 94.9, c = 100.2 Å and one molecule of l-asparaginase in the asymmetric unit. Elucidation of the crystal structure will provide insight into the active site of the enzyme and a better understanding of the structure-activity relationship in l-asparaginases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.