The recent recovery processes of electric arc furnace dust (EAFD) include stabilization within materials with potential uses in the construction sector. The stabilization of EAFD by alkaline activation of different alumina-silicates, resulting in low-cost and environmentally friendly materials. The leaching standards within the different European regulations allow evaluating waste materials and products. This work aims to study the introduction of EAFD in FA–clay geopolymers, assessing the environmental and geochemical behavior in two different scenarios, disposal, and utilization. For it, the compliance equilibrium-based batch test (EN 12457-2) and pH dependence test (EN 14429) have been used. The dosages of EAFD in the geopolymeric matrix are 5% to 20% with curing temperatures of 75 °C and 225 °C. The introduction of EAFD favors the development of the flexural strength. From the environmental point of view, metals related to EAFD, such as Zn, Pb, or Cu, are retained in the matrix. While As or Se, comes mainly from clay, present a high concentration. Therefore, the role of clay should be analyzed in future research. As expected by the high iron content in the EAFD, the iron complexes on the surface of the material are responsible for immobilization of metals in this type of matrix.
The incorporation of coal fly ash (CFA) in fired clay bricks (FCBs), as a clay replacement, contributes toward cleaner production practices. CFA disposal is an important issue worldwide due to its huge volume and to its potential negative environmental impacts, and currently does not have a recovery route due to its high concentration in unburned materials. In this study, the impact of the incorporation of two CFA, with different content of unburned carbon, FAA (low LOI) and FAB (high LOI) in FCBs, from a technical and environmental point of view was conducted. Unburned carbon plays an important role on the final properties of FCBs. The thermal decomposition during the firing process promotes an increase of water absorption, decreasing the flexural strength as the porosity increases, although the technical and mechanical properties of samples containing up to 30% FAA and percentages of 20% FAB are acceptable. The leaching behaviour showed an immobilisation of Cr and Se in FCBs while Mo reduced its mobility to values below non-hazardous limits. Acid gas emission values do not exceed the reference emission value, except for SO2 emissions while the level of CO2 emissions must be estimated based on the total annual production of the ceramic factory.
Solidification/stabilization (S/S) of acid waste using Ordinary Portland Cement (OPC) is widely implemented, but, due to the impact on climate change, alternative methods are being investigated. In this work, first, the feasibility of using coal fly-ash/clay-based geopolymers for the S/S of Zn plant residues (ZPR), Cadmium Sponge (CS), and Anode Mud (AM) is proposed as a treatment prior to disposal in landfills. Different variables, such as the type of processing, molding (as-received waste), and pressing (dried waste), and activators, a commercial and an alternative residual sodium carbonate, have been studied. The technical and environmental assessments of the S/S process by means of compressive strength and the leaching of critical pollutants have been monitored. Immobilization efficiencies of Cd and Zn higher than 99% have been obtained by dosing 50% of the acid waste, 6 M NaOH solution (20 min contact time), cured at 75 °C (48 h) and at room temperature (28 days), achieving in the leachates pH values of 7 to 10 and [Cd] and [Zn] < 1 and 2.5 mg/kg, respectively. However, alkaline activation increases As leaching, mainly associated with the clay. Secondly, removing clay from the geopolymer formulation, the optimization of geopolymer parameters, acid waste/geopolymer ratio, liquid/solid ratio, and NaOH molar concentration enables obtaining a significant reduction in the release of As and Cd, and Zn is kept at acceptable values that meet the non-hazardous waste landfill disposal limits for the S/S of both acid wastes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.