We consider a profit maximization problem where we are asked to price a set of m items that are to be assigned to a set of n customers. The items can be represented as the edges of an undirected (multi)graph G, where an edge multiplicity larger than one corresponds to multiple copies of the same item. Each customer is interested in purchasing a bundle of edges of G, and we assume that each bundle forms a simple path in G. Each customer has a known budget for her respective bundle, and is interested only in that particular bundle. The goal is to determine item prices and a feasible assignment of items to customers in order to maximize the total profit. When the underlying graph G is a path, we derive a fully polynomial time approximation scheme, complementing a recent NP-hardness result. If the underlying graph is a tree, and edge multiplicities are one, we show that the problem is polynomially solvable, contrasting its APX-hardness for the case of unlimited availability of items. However, if the underlying graph is a grid, and edge multiplicities are one, we show that it is even NP-complete to approximate the maximum profit to within a factor n 1−ε .
Abstract. We consider a revenue maximization problem where we are selling a set of items, each available in a certain quantity, to a set of bidders. Each bidder is interested in one or several bundles of items. We assume the bidders' valuations for each of these bundles to be known. Whenever bundle prices are determined by the sum of single item prices, this algorithmic problem was recently shown to be inapproximable to within a semi-logarithmic factor. We consider two scenarios for determining bundle prices that allow to break this inapproximability barrier. Both scenarios are motivated by problems where items are different, yet comparable. First, we consider classical single item prices with an additional monotonicity constraint, enforcing that larger bundles are at least as expensive as smaller ones. We show that the problem remains strongly NP-hard, and we derive a PTAS. Second, motivated by real-life cases, we introduce the notion of affine price functions, and derive fixed-parameter polynomial time algorithms.
We address the algorithmic complexity of a profit maximization problem in capacitated, undirected networks. We are asked to price a set of m capacitated network links to serve a set of n potential customers. Each customer is interested in purchasing a network connection that is specified by a simple path in the network and has a maximum budget that we assume to be known to the seller. The goal is to decide which customers to serve, and to determine prices for all network links in order to maximize the total profit. We address this pricing problem in different network topologies. More specifically, we derive several results on the algorithmic complexity of this profit maximization problem, given that the network is either a path, a cycle, a tree, or a grid. Our results include approximation algorithms as well as inapproximability results.
People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.