The importance of metabolic syndrome (MetS) lies in its associated risk of cardiovascular disease and type 2 diabetes, as well as other harmful conditions such as nonalcoholic fatty liver disease. In this report, the available scientific evidence on the associations between lifestyle changes and MetS and its components is reviewed to derive recommendations for MetS prevention and management. Weight loss through an energy-restricted diet together with increased energy expenditure through physical activity contribute to the prevention and treatment of MetS. A Mediterranean-type diet, with or without energy restriction, is an effective treatment component. This dietary pattern should be built upon an increased intake of unsaturated fat, primarily from olive oil, and emphasize the consumption of legumes, cereals (whole grains), fruits, vegetables, nuts, fish, and low-fat dairy products, as well as moderate consumption of alcohol. Other dietary patterns (Dietary Approaches to Stop Hypertension, new Nordic, and vegetarian diets) have also been proposed as alternatives for preventing MetS. Quitting smoking and reducing intake of sugar-sweetened beverages and meat and meat products are mandatory. Nevertheless, there are inconsistencies and gaps in the evidence, and additional research is needed to define the most appropriate therapies for MetS. In conclusion, a healthy lifestyle is critical to prevent or delay the onset of MetS in susceptible individuals and to prevent cardiovascular disease and type 2 diabetes in those with existing MetS. The recommendations provided in this article should help patients and clinicians understand and implement the most effective approaches for lifestyle change to prevent MetS and improve cardiometabolic health.
Lipid droplets (LDs) are organelles that coordinate lipid storage and mobilization, both processes being especially important in cells specialized in managing fat, the adipocytes. Proteomic analyses of LDs have consistently identified the small GTPase Rab18 as a component of the LD coat. However, the specific contribution of Rab18 to adipocyte function remains to be elucidated. Herein, we have analyzed Rab18 expression, intracellular localization and function in relation to the metabolic status of adipocytes. We show that Rab18 production increases during adipogenic differentiation of 3T3-L1 cells. In addition, our data show that insulin induces, via phosphatidylinositol 3-kinase (PI3K), the recruitment of Rab18 to the surface of LDs. Furthermore, Rab18 overexpression increased basal lipogenesis and Rab18 silencing impaired the lipogenic response to insulin, thereby suggesting that this GTPase promotes fat accumulation in adipocytes. On the other hand, studies of the β-adrenergic receptor agonist isoproterenol confirmed and extended previous evidence for the participation of Rab18 in lipolysis. Together, our data support the view that Rab18 is a common mediator of lipolysis and lipogenesis and suggests that the endoplasmic reticulum (ER) is the link that enables Rab18 action on these two processes. Finally, we describe, for the first time, the presence of Rab18 in human adipose tissue, wherein the expression of this GTPase exhibits sex- and depot-specific differences and is correlated to obesity. Taken together, these findings indicate that Rab18 is involved in insulin-mediated lipogenesis, as well as in β-adrenergic-induced lipolysis, likely facilitating interaction of LDs with ER membranes and the exchange of lipids between these compartments. A role for Rab18 in the regulation of adipocyte biology under both normal and pathological conditions is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.