Work-related musculoskeletal disorders are a major concern globally affecting societies, companies, and individuals. To address this, a new sensor-based system is presented: the Smart Workwear System, aimed at facilitating preventive measures by supporting risk assessments, work design, and work technique training. The system has a module-based platform that enables flexibility of sensor-type utilization, depending on the specific application. A module of the Smart Workwear System that utilizes haptic feedback for work technique training is further presented and evaluated in simulated mail sorting on sixteen novice participants for its potential to reduce adverse arm movements and postures in repetitive manual handling. Upper-arm postures were recorded, using an inertial measurement unit (IMU), perceived pain/discomfort with the Borg CR10-scale, and user experience with a semi-structured interview. This study shows that the use of haptic feedback for work technique training has the potential to significantly reduce the time in adverse upper-arm postures after short periods of training. The haptic feedback was experienced positive and usable by the participants and was effective in supporting learning of how to improve postures and movements. It is concluded that this type of sensorized system, using haptic feedback training, is promising for the future, especially when organizations are introducing newly employed staff, when teaching ergonomics to employees in physically demanding jobs, and when performing ergonomics interventions.
On-farm monitoring of milk composition can support close control of the udder and metabolic health of individual dairy cows. In previous studies, near-infrared (NIR) spectroscopy applied to milk analysis has proven useful for predicting the main components of raw milk (fat, protein, and lactose). In this contribution, we present and evaluate a precise tool for online milk composition analysis on the farm. For each milking, the online analyzer automatically collects and analyses a representative milk sample. The system acquires the NIR transmission spectra of the milk samples in the wavelength range from 960 to 1690 nm and performs a milk composition prediction afterward. Over a testing period of 8 weeks, the sensor collected 1165 NIR transmittance spectra of raw milk samples originating from 36 cows for which reference chemical analyses were performed for fat, protein, and lactose. For the same online sensor system, two calibration scenarios were evaluated: training posthoc prediction models based on a representative set of calibration samples (n = 319) acquired over the
Today, measurement of raw milk quality and composition relies on Fourier transform infrared spectroscopy to monitor and improve dairy production and cow health. However, these laboratory analyzers are bulky, expensive and can only be used by experts. Moreover, the sample logistics and data transfer delay the information on product quality, and the measures taken to optimize the care and feeding of the cattle render them less suitable for real-time monitoring. An on-farm spectrometer with compact size and affordable cost could bring a solution for this discrepancy. This paper evaluates the performance of microelectromechanical system (MEMS)-based near-infrared (NIR) spectrometers as on-farm milk analyzers. These spectrometers use Fabry–Pérot interferometers for wavelength tuning, giving them the advantage of very compact size and affordable price. This study discusses the ability of MEMS spectrometers to reach the accuracy limits set by the International Committee for Animal Recording (ICAR) for at-line analyzers of the milk content regarding fat, protein and lactose. According to the achieved results, the transmission measurements with the NIRONE 2.5 spectrometer perform best, with an acceptable root mean squared error of prediction (RMSEP = 0.21% w/w) for the measurement of milk fat and excellent performance (RMSEP ≤ 0.11% w/w) for protein and lactose. In addition, the transmission measurements using the NIRONE 2.0 module give similar results for fat and lactose (RMSEP of 0.21 and 0.10% w/w respectively), while the prediction of protein is slightly deteriorated (RMSEP = 0.15% w/w). These results show that the MEMS spectrometers can reach sufficient prediction accuracy compared to ICAR standard values for at-line and in-line fat, protein and lactose prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.