Cortico-striato-thalamic (CST) systems are anatomical substrates for many motor and executive functions and are implicated in diverse neuropsychiatric disorders. Electrophysiological studies in rats, monkeys and patients with Parkinson's disease have shown that power and coherence of low frequency oscillations in CST systems can be profoundly modulated by dopaminergic drugs. We combined functional MRI with correlational and path analyses to investigate functional and effective connectivity, respectively, of a prefronto-striato-thalamic system activated by object location learning in healthy elderly human subjects (n = 23; mean age = 72 years). Participants were scanned in a repeated measures, randomized, placebo-controlled design to measure modulation of physiological connectivity between CST regions following treatment with drugs which served both to decrease (sulpiride) and increase (methylphenidate) dopaminergic transmission, as well as non-dopaminergic treatments (diazepam and scopolamine) to examine non-specific effects. Functional connectivity of caudate nucleus was modulated specifically by dopaminergic drugs, with opposing effects of sulpiride and methylphenidate. The more salient effect of sulpiride was to increase functional connectivity between caudate and both thalamus and ventral midbrain. A path diagram based on prior knowledge of unidirectional anatomical projections between CST components was fitted satisfactorily to the observed inter-regional covariance matrix. The effect of sulpiride was defined more specifically in the context of this model as increased strength of effective connection from ventral midbrain to caudate nucleus. In short, we have demonstrated enhanced functional and effective connectivity of human caudate nucleus following sulpiride treatment, which is compatible both with the anatomy of ascending dopaminergic projections and with electrophysiological studies indicating abnormal coherent oscillations of CST neurons in parkinsonian states.
This is the first pharmacokinetic/pharmacodynamic study to find an association between plasma levels of MPH and its modulatory effects on brain activation measured using fMRI. The results suggest that catecholaminergic mechanisms may be important in brain adaptivity to task difficulty and in task-specific recruitment of spatial attention systems.
Brain activation is adaptive to task difficulty and practice. We used functional MRI to map brain systems activated by an object-location learning task in 24 healthy elderly volunteers each scanned following placebo and two of four active drugs studied. We distinguished a fronto-striatal system adaptive to difficulty from a posterior system adaptive to practice. Fronto-striatal response to increased cognitive load was significantly attenuated by scopolamine, sulpiride and methylphenidate; practice effects were not modulated by these drugs but were enhanced by diazepam. We also found enhancement by methylphenidate, and attenuation by sulpiride, of load response in premotor, cingulate and parietal regions comprising a spatial attention network. Difficulty and practice evoke anatomically and pharmacologically dissociable brain activation dynamics, which are probably mediated by different neurotransmitter systems in humans.
Analogues of [Orn6]-SP6-11 have been synthesized in which the SCH3 group of the Met11 side chain is replaced by other functional groups, such as (CH2)2NH2, COOH, CONH2, and COOR, which have basic, acid, or neutral character and which may act as either H-bonding donors or H-bonding acceptors. These analogues were tested in guinea pig ileum and rat colon muscularis mucosae, in vitro. Substitution of Lys, Gln, or Glu at position 11 caused a marked reduction in biological activity in both tissues. In contrast, the glutamate benzyl ester analogue had only slightly reduced activity in the guinea pig ileum and an increased (4.7 times) activity in the rat colon. It is concluded that charged groups in the side chain at position 11 of SP6-11 reduce the biological activity of SP hexapeptide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.