Background: The national programs for the harmonization of hemoglobin (Hb)A1c measurements in the US [National Glycohemoglobin Standardization Program (NGSP)], Japan [Japanese Diabetes Society (JDS)/Japanese Society of Clinical Chemistry (JSCC)], and Sweden are based on different designated comparison methods (DCMs). The future basis for international standardization will be the reference system developed by the IFCC Working Group on HbA1c Standardization. The aim of the present study was to determine the relationships between the IFCC Reference Method (RM) and the DCMs. Methods: Four method-comparison studies were performed in 2001–2003. In each study five to eight pooled blood samples were measured by 11 reference laboratories of the IFCC Network of Reference Laboratories, 9 Secondary Reference Laboratories of the NGSP, 3 reference laboratories of the JDS/JSCC program, and a Swedish reference laboratory. Regression equations were determined for the relationship between the IFCC RM and each of the DCMs. Results: Significant differences were observed between the HbA1c results of the IFCC RM and those of the DCMs. Significant differences were also demonstrated between the three DCMs. However, in all cases the relationship of the DCMs with the RM were linear. There were no statistically significant differences between the regression equations calculated for each of the four studies; therefore, the results could be combined. The relationship is described by the following regression equations: NGSP-HbA1c = 0.915(IFCC-HbA1c) + 2.15% (r2 = 0.998); JDS/JSCC-HbA1c = 0.927(IFCC-HbA1c) + 1.73% (r2 = 0.997); Swedish-HbA1c = 0.989(IFCC-HbA1c) + 0.88% (r2 = 0.996). Conclusion: There is a firm and reproducible link between the IFCC RM and DCM HbA1c values.
As the lipidomics field continues to advance, self-evaluation within the community is critical. Here, we performed an interlaboratory comparison exercise for lipidomics using Standard Reference Material (SRM) 1950-Metabolites in Frozen Human Plasma, a commercially available reference material. The interlaboratory study comprised 31 diverse laboratories, with each laboratory using a different lipidomics workflow. A total of 1,527 unique lipids were measured across all laboratories and consensus location estimates and associated uncertainties were determined for 339 of these lipids measured at the sum composition level by five or more participating laboratories. These evaluated lipids detected in SRM 1950 serve as community-wide benchmarks for intra- and interlaboratory quality control and method validation. These analyses were performed using nonstandardized laboratory-independent workflows. The consensus locations were also compared with a previous examination of SRM 1950 by the LIPID MAPS consortium. While the central theme of the interlaboratory study was to provide values to help harmonize lipids, lipid mediators, and precursor measurements across the community, it was also initiated to stimulate a discussion regarding areas in need of improvement.
HbA1C is the stable glucose adduct to the N-terminal group of the beta-chain of HbA0. The measurement of HbA1c in human blood is most important for the long-term control of the glycaemic state in diabetic patients. Because there was no internationally agreed reference method the IFCC Working Group on HbA1c Standardization developed a reference method which is here described. In a first step haemoglobin is cleaved into peptides by the enzyme endoproteinase Glu-C, and in a second step the glycated and non-glycated N-terminal hexapeptides of the beta-chain obtained are separated and quantified by HPLC and electrospray ionisation mass spectrometry or in a two-dimensional approach using HPLC and capillary electrophoresis with UV-detection. Both principles give identical results. HbA1c is measured as ratio between the glycated and non-glycated hexapeptides. Calibrators consisting of mixtures of highly purified HbA1c and HbA0 are used. The analytical performance of the reference method has been evaluated by an international network of reference laboratories comprising laboratories from Europe, Japan and the USA. The intercomparison studies of the network showed excellent results with intra-laboratory CVs of 0.5 to 2% and inter-laboratory CVs of 1.4 to 2.3%. Possible interferences have been carefully investigated. Due to the higher specificity of the reference method the results are lower than those generated with most of the present commercial methods which currently are calibrated with unspecific designated comparison methods. The new reference method has been approved by the member societies of the International Federation of Clinical Chemistry and Laboratory Medicine and will be the basis for the future uniform standardization of HbA1c routine assays worldwide.
We have measured 29 pesticides in plasma samples collected at birth between 1998 and 2001 from 230 mother and newborn pairs enrolled in the Columbia Center for Children's Environmental Health prospective cohort study. Our prior research has shown widespread pesticide use during pregnancy among this urban minority cohort from New York City. We also measured eight pesticides in 48-hr personal air samples collected from the mothers during pregnancy. The following seven pesticides were detected in 48-83% of plasma samples (range, 1-270 pg/g): the organophosphates chlorpyrifos and diazinon, the carbamates bendiocarb and 2-isopropoxyphenol (metabolite of propoxur), and the fungicides dicloran, phthalimide (metabolite of folpet and captan), and tetrahydrophthalimide (metabolite of captan and captafol). Maternal and cord plasma levels were similar and, except for phthalimide, were highly correlated (p < 0.001). Chlorpyrifos, diazinon, and propoxur were detected in 100% of personal air samples (range, 0.7-6,010 ng/m(3)). Diazinon and propoxur levels were significantly higher in the personal air of women reporting use of an exterminator, can sprays, and/or pest bombs during pregnancy compared with women reporting no pesticide use or use of lower toxicity methods only. A significant correlation was seen between personal air level of chlorpyrifos, diazinon, and propoxur and levels of these insecticides or their metabolites in plasma samples (maternal and/or cord, p < 0.05). The fungicide ortho-phenylphenol was also detected in 100% of air samples but was not measured in plasma. The remaining 22 pesticides were detected in 0-45% of air or plasma samples. Chlorpyrifos, diazinon, propoxur, and bendiocarb levels in air and/or plasma decreased significantly between 1998 and 2001. Findings indicate that pesticide exposures are frequent but decreasing and that the pesticides are readily transferred to the developing fetus during pregnancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.