The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
In this paper, we propose a new numerical method for improving the mass conservation properties of the level set method when the interface is passively advected in a flow field. Our method uses Lagrangian marker particles to rebuild the level set in regions which are under-resolved. This is often the case for flows undergoing stretching and tearing. The overall method maintains a smooth geometrical description of the interface and the implementation simplicity characteristic of the level set method. Our method compares favorably with volume of fluid methods in the conservation of mass and purely Lagrangian schemes for interface resolution. The method is presented in three spatial dimensions.
Laboratory experiments on stably stratified grid turbulence have suggested that turbulent diffusivity $\kappa_\rho$ can be expressed in terms of a turbulence activity parameter $\epsilon/\nu N^2$, with different power-law relations appropriate for different levels of $\epsilon/\nu N^2$. To further examine the applicability of these findings to both a wider range of the turbulence intensity parameter $\epsilon/\nu N^2$ and different forcing mechanisms, DNS data of homogeneous sheared stratified turbulence generated by Shih et al. (2000) and Venayagamoorthy et al. (2003) are analysed in this study. Both scalar eddy diffusivity $\kappa_\rho$ and eddy viscosity $\kappa_\nu$ are found to be well-correlated with $\epsilon/\nu N^2$, and three distinct regimes of behaviour depending on the value of $\epsilon/\nu N^2$ are apparent. In the diffusive regime $D$, corresponding to low values of $\epsilon/\nu N^2$ and decaying turbulence, the total diffusivity reverts to the molecular value; in the intermediate regime $I$, corresponding to $7 \,{<} \epsilon/\nu N^2 \,{<}\, 100$ and stationary turbulence, diffusivity exhibits a linear relationship with $\epsilon/\nu N^2$, as predicted by Osborn (1980); finally, in the energetic regime $E$, corresponding to higher values of $\epsilon/\nu N^2$ and growing turbulence, the diffusivity scales with $(\epsilon/\nu N^2)^{1/2}$. The dependence of the flux Richardson number $R_f$ on $\thing$ explains the shift in power law between regimes $I$ and $E$. Estimates for the overturning length scale and velocity scales are found for the various $\epsilon/\nu N^2$ regimes. It is noted that $\epsilon/\nu N^2 \,{\sim}\, \hbox{\it Re}/\hbox{\it Ri}\,{\sim}\,\hbox{\it ReFr}^2$, suggesting that such Reynolds–Richardson number or Reynolds–Froude number aggregates are more descriptive of stratified turbulent flow conditions than the conventional reliance on Richardson number alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.