This paper uses numerical simulation to analyse the effects of uniform rotation on homogeneous turbulence. Both large-eddy and full simulations were made. The results indicate that the predominant effect of rotation is to decrease the rate of dissipation of the turbulence and increase the lengthscales, especially those along the axis of rotation. These effects are a consequence of the reduction, due to the generation of inertial waves, of the net energy transfer from large eddies to small ones. Experiments are also influenced by a more complicated interaction between the rotation and the wakes of the turbulence-generating grid which modifies the nominal initial conditions in the experiment. The latter effect is accounted for in simulations by modifying the initial conditions. Finally, a two-equation model is proposed that accounts for the effects of rotation and is able to reproduce the experimental decay of the turbulent kinetic energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.