Research on educational quality has gotten a lot of attention as the current higher education teaching reform continues to deepen and grow. The key to improving education quality is to improve teaching quality, and teacher evaluation is an important tool for doing so. As a result, educational management requires the development and refinement of a system for evaluating teaching quality. Traditional approaches to assessing teaching quality, on the other hand, are problematic due to their limitations. As a result, a scientific and reasonable model for evaluating the teaching quality of college undergraduate teachers must be developed. We present a unique model for evaluating the quality of classroom teaching in colleges and universities, which is based on improved genetic algorithms and neural networks. The basic idea is to use adaptive mutation genetic algorithms to refine the initial weights and thresholds of the BP neural network. The teaching quality evaluation findings were improved by improving the neural network’s prediction accuracy and convergence speed, resulting in a more practical scheme for evaluating college and university teaching quality. We have conducted simulation experiments and comparative analysis, and the mean square error of the results of the proposed model is very low, which proves the effectiveness and superiority of the algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.