Natural products represent a rich reservoir of small molecule drug candidates utilized as antimicrobial drugs, anticancer therapies, and immunomodulatory agents. These molecules are microbial secondary metabolites synthesized by co-localized genes termed Biosynthetic Gene Clusters (BGCs). The increase in full microbial genomes and similar resources has led to development of BGC prediction algorithms, although their precision and ability to identify novel BGC classes could be improved. Here we present a deep learning strategy (DeepBGC) that offers reduced false positive rates in BGC identification and an improved ability to extrapolate and identify novel BGC classes compared to existing machine-learning tools. We supplemented this with random forest classifiers that accurately predicted BGC product classes and potential chemical activity. Application of DeepBGC to bacterial genomes uncovered previously undetectable putative BGCs that may code for natural products with novel biologic activities. The improved accuracy and classification ability of DeepBGC represents a major addition to in-silico BGC identification.
In the paper we propose an alternative approach to the multispectral data acquisition of the cultural heritage artifacts. The demonstrated solution is mobile, affordable, and consists only of commercial off-the-shelf products. It could be used for the data acquisition in-situ without limitations. It was designed for multispectral scanning of cultural heritage artifacts for their first analysis, for multimedia presentations dedicated to public, and, of course, for art conservation studies. The presented solution contains next to the hardware part as well the description of pre-analysis step -two alternative ways of the photometric calibration -to ensure the anticipated precision. The applicability of the framework was demonstrated on the case study, the preliminary spectral analysis. The proposed methodology is successfully used in the art restoration practice.
Natural products represent a rich reservoir of small molecule drug candidates utilized as antimicrobial drugs, anticancer therapies, and immunomodulatory agents. These molecules are microbial secondary metabolites synthesized by co-localized genes termed Biosynthetic Gene Clusters (BGCs). The increase in full microbial genomes and similar resources has led to development of BGC prediction algorithms, although their precision and ability to identify novel BGC classes could be improved. Here we present a deep learning strategy (DeepBGC) that offers more accurate BGC identification and an improved ability to extrapolate and identify novel BGC classes compared to existing tools. We supplemented this with downstream random forest classifiers that accurately predicted BGC product classes and potential chemical activity.Application of DeepBGC to bacterial genomes uncovered previously undetectable BGCs that may code for natural products with novel biologic activities. The improved accuracy and classification ability of DeepBGC represents a significant step forward for in-silico BGC identification.
Biocompatibility testing of new materials is often performed in vitro by measuring the growth rate of mammalian cancer cells in time-lapse images acquired by phase contrast microscopes. The growth rate is measured by tracking cell coverage, which requires an accurate automatic segmentation method. However, cancer cells have irregular shapes that change over time, the mottled background pattern is partially visible through the cells and the images contain artifacts such as halos. We developed a novel algorithm for cell segmentation that copes with the mentioned challenges. It is based on temporal differences of consecutive images and a combination of thresholding, blurring, and morphological operations. We tested the algorithm on images of four cell types acquired by two different microscopes, evaluated the precision of segmentation against manual segmentation performed by a human operator, and finally provided comparison with other freely available methods. We propose a new, fully automated method for measuring the cell growth rate based on fitting a coverage curve with the Verhulst population model. The algorithm is fast and shows accuracy comparable with manual segmentation. Most notably it can correctly separate live from dead cells.
Phase contrast is a noninvasive microscopy imaging technique that is widely used in time-lapse imaging of cells. Resulting images however contain some optical artifacts, which makes automated processing by computer difficult. We developed a novel algorithm for cell segmentation. It is based on processing of time differences between images and combination of thresholding, blurring and morphological operations. We tested the algorithm on four different cell types acquired by two different microscopes. We evaluated the precision of segmentation against the manual segmentation by human operator and compared also with other methods. Our algorithm is simple, fast and shows accuracy that is comparable to manual segmentation. In addition it can correctly separate the dead from living cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.