Liver organoids hold a great potential to understand liver development and contribute for drug screening and toxicological testing. However, conventional methods to generate organoids provide insufficient liver functions and less reproducibility, due to lack of controllability of cellular microenvironmental cues. To tackle these issues, we focus on one of the environmental cues, pressure stimuli by heart beating, and develop a microfluidic‐based cell culture platform integrating a fluidic capacitor to produce pressure stimuli with hydrostatic pressure. Furthermore, we demonstrate a numerical simulation based on equivalent circuit model for designing the device parameters with sufficient accuracy. This device concept will provide insights into physical micro‐environmental regulation on organoid development.
Liver organoids hold a great potential to understand liver development and contribute for drug screening and toxicological testing. However, conventional methods to generate organoids provide insufficient liver functions and less reproducibility, due to lack of controllability of cellular microenvironmental cues. To tackle these issues, we focus on one of the environmental cues, pressure stimuli by heart beating, and develop a microfluidic-based cell culture platform integrating a fluidic capacitor to produce pressure stimuli with hydrostatic pressure. Furthermore, we demonstrate a numerical simulation based on equivalent circuit model for designing the device parameters with sufficient accuracy. This device concept will provide insights into physical micro-environmental regulation on organoid development. K E Y W O R D S equivalent circuit model, fluidic capacitor, organoid, polydimethylsiloxane, pressure stimulus Electron Comm Jpn. 2019;102:41-49.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.