The service network is capable of addressing large-scale service composition. However, existing service network works still have several limitations. Prior knowledge, such as expert-defined service chains, is not incorporated into the service network. QoS constraints are less considered in the service network, and thus the generated service chain does not always satisfy the optimal QoS constraints. Additionally, some basic services also require outputs to be used directly as inputs, which the service network cannot provide. To address these limitations, this paper proposes a geospatial service web (GSW) model named SR-QoS-GSW that incorporates service semantic relationships and QoS information. The SR-QoS-GSW model consists of atomic services and composite services that consider QoS, processing services, data services, and relationships among them. A SR-QoS-GSW prototype was developed using 570 atomic services and 27 composite services and evaluated using two case studies—a river network extraction and an urban housing selection. Then, the information entropy and time complexity between SR-QoS-GSW and the existing service network were compared. The results show that geospatial service chains can be created more efficiently by incorporating existing service chains as composite services. Integrating QoS information into the GSW would allow service composition algorithms to generate service chains that satisfy optimal QoS constraints. The outputs of services used as new inputs with additional self-matching relationships also give the service network greater flexibility. Finally, the analysis of the information entropy and time complexity verified the increased diversity and decreased the search space of the SR-QoS-GSW.
Schools across the United States and around the world canceled in-person classes beginning in March 2020 to contain the spread of the COVID-19 virus, a public health emergency. Many empirical pieces of research have demonstrated that educational institutions aid students’ overall growth and studies have stressed the importance of prioritizing in-person learning to cultivate social values through education. Two years into the COVID-19 pandemic, policymakers and school administrators have been making plans to reopen schools. However, few scientific studies had been done to support planning classroom seating while complying with the social distancing policy. To ensure a safe return to campus, we designed a ‘community-safe’ method for classroom management that incorporates social distancing and computes seating capacity. In this paper, we present custom GIS tools developed for two types of classroom settings – classrooms with fixed seating and classrooms with movable seating. The fixed model tool is based on an optimized backtracking algorithm. Our flexible model tool can consider various classroom dimensions, fixtures, and a safe social distance. The tool is built on a python script that can be executed to calculate revised seating capacity to maintain a safe social distance for any defined space. We present a real-world implementation of the system at Eastern Michigan University, United States, where it was used to support campus reopening planning in 2020. Our proposed GIS-based technique could be applicable for seating planning in other indoor and outdoor settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.