We propose that cross-sensory stimuli presenting a positive attributable source of an aversive sound can modulate negative reactions to the sound. In Experiment 1, participants rated original video sources (OVS) of eight aversive sounds (e.g., nails scratching a chalkboard) as more aversive than eight positive attributable video sources (PAVS) of those same sounds (e.g., someone playing a flute) when these videos were presented silently. In Experiment 2, new participants were presented with those eight aversive sounds in three blocks. In Blocks 1 and 3, the sounds were presented alone; in Block 2, four of the sounds were randomly presented concurrently with their corresponding OVS videos, and the other four with their corresponding PAVS videos. Participants rated each sound, presented with or without video, on three scales: discomfort, unpleasantness, and bodily sensations. We found the concurrent presentation of videos robustly modulates participants' reactions to the sounds: compared to the sounds alone (Block 1), concurrent presentation of PAVS videos significantly reduced negative reactions to the sounds, and the concurrent presentation of OVS videos significantly increased negative reactions, across all three scales. These effects, however, did not linger into Block 3 when the sounds were presented alone again. Our results provide novel evidence that negative reactions to aversive sounds can be modulated through cross-sensory temporal syncing with a positive attributable video source. Although this research was conducted with a neurotypical population, we argue that our findings have implications for the treatment of misophonia.
The anterior cingulate cortex (ACC) has been extensively implicated in the functional brain network underlying chronic pain. Electrical stimulation of the ACC has been proposed as a therapy for refractory chronic pain, although, mechanisms of therapeutic action are still unclear. As stimulation of the ACC has been reported to produce many different behavioral and perceptual responses, this region likely plays a varied role in sensory and emotional integration as well as modulating internally generated perceptual states. In this case series, we report the emergence of subjective musical hallucinations (MH) after electrical stimulation of the ACC in two patients with refractory chronic pain. In an N-of-1 analysis from one patient, we identified neural activity (local field potentials) that distinguish MH from both the non-MH condition and during a task involving music listening. Music hallucinations were associated with reduced alpha band activity and increased gamma band activity in the ACC. Listening to similar music was associated with different changes in ACC alpha and gamma power, extending prior results that internally generated perceptual phenomena are supported by circuits in the ACC. We discuss these findings in the context of phantom perceptual phenomena and posit a framework whereby chronic pain may be interpreted as a persistent internally generated percept.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.