International audienceThe oxide/semiconductor structure is key to controlling current in electronic devices and HfO$_2$ is a common gate material in conventional electronic devices due to its favorable dielectric properties. Graphene devices also require insulating gates. We demonstrate a unique direct growth approach to obtain the bottom gate structure (graphene/HfO$_2$/n-SiC). The present approach involves transfer of graphene grown by chemical vapor deposition (CVD) on Cu to oxidized Si wafers, a complex process prone to low yield and reduced performance. Furthermore, HfO$_2$ is preferred to SiO$_2$ because of its superior properties. The proposed concept consists of the direct deposition of graphene by solid carbon molecular beam epitaxy on Hf metal coated n-type SiC, followed by oxygen intercalation to form HfO$_2$. The oxygen intercalation will then convert the underlying Hf into HfO$_2$ due to the strong affinity of Hf with oxygen. We identify the graphene/HfO 2 formation by Raman, X-ray photoelectron spectroscopy (XPS), Low energy electron diffraction (LEED), Low energy electron microscopy (LEEM) and electrical properties including Hall mobility and leakage current measurement
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.