Ecosystem engineers, organisms that modify the physical environment, are generally thought to increase diversity by facilitating species that benefit from engineered habitats. Recent theoretical work, however, suggests that ecosystem engineering could initiate cascades of trophic interactions that shape community structure in unexpected ways, potentially having negative indirect effects on abundance and diversity in components of the community that do not directly interact with the habitat modifications. We tested the indirect effects of a gall‐forming wasp on arthropod communities in surrounding unmodified foliage. We experimentally removed all senesced galls from entire trees during winter and sampled the arthropod community on foliage after budburst. Gall removal resulted in 59% greater herbivore density, 26% greater herbivore richness, and 27% greater arthropod density five weeks after budburst. Gall removal also reduced the differences in community composition among trees (i.e., reduced beta diversity), even when accounting for differences in richness. The community inside galls during winter and through the growing season was dominated by jumping spiders (Salticidae; 0.87 ± 0.12 spiders per gall). We suggest that senesced galls provided habitat for spiders, which suppressed herbivorous arthropods and increased beta diversity by facilitating assembly of unusual arthropod communities. Our results demonstrate that the effects of habitat modification by ecosystem engineers can extend beyond merely providing habitat for specialists; the effects can propagate far enough to influence the structure of communities that do not directly interact with habitat modifications.
High-quality, effective vocabulary instruction is essential for supporting all students’ academic success, and it is particularly important for students with disabilities. Teacher preparation programs are faced with the challenge of not only training preservice teachers to provide effective vocabulary instruction across grades and content areas, but also to prepare them to teach students with disabilities. This randomized control trial included 200 preservice teachers. We tested the effects that a combination of multimedia instruction and performance feedback on evidence-based practices for effective vocabulary instruction had on participants’ knowledge and application of those practices. Compared with participants who received traditional lecture and text-based instruction and subjective feedback, we found that the group that received multimedia instruction and performance feedback implemented more of the practices, more frequently and for a longer duration. Implications for research and teacher preparation are discussed.
Pathogenic fungi are increasingly associated with epidemics in wildlife populations. Snake fungal disease (SFD, also referred to as Ophidiomycosis) is an emerging threat to snakes, taxa that are elusive and difficult to sample. Thus, assessments of the effects of SFD on populations have rarely occurred. We used a field technique to enhance detection, Passive Integrated Transponder (PIT) telemetry, and a multi‐state capture–mark–recapture model to assess SFD effects on short‐term (within‐season) survival, movement, and surface activity of two wild snake species, Regina septemvittata (Queensnake) and Nerodia sipedon (Common Watersnake). We were unable to detect an effect of disease state on short‐term survival for either species. However, we estimated Bayesian posterior probabilities of >0.99 that R. septemvittata with SFD spent more time surface‐active and were less likely to permanently emigrate from the study area. We also estimated probabilities of 0.98 and 0.87 that temporary immigration and temporary emigration rates, respectively, were lower in diseased R. septemvittata. We found evidence of elevated surface activity and lower temporary immigration rates in diseased N. sipedon, with estimated probabilities of 0.89, and found considerably less support for differences in permanent or temporary emigration rates. This study is the first to yield estimates for key demographic and behavioral parameters (survival, emigration, surface activity) of snakes in wild populations afflicted with SFD. Given the increase in surface activity of diseased snakes, future surveys of snake populations could benefit from exploring longer‐term demographic consequences of SFD and recognize that disease prevalence in surface‐active animals may exceed that of the population as a whole.
The red-eared slider turtle (Trachemys scripta elegans; RES) is often considered one of the world’s most invasive species. Results from laboratory and mesocosm experiments suggest that introduced RES outcompete native turtles for key ecological resources, but such experiments can overestimate the strength of competition. We report on the first field experiment with a wild turtle community, involving introduced RES and a declining native species of conservation concern, the western pond turtle (Emys marmorata; WPT). Using a before/after experimental design, we show that after removing most of an introduced RES population, the remaining RES dramatically shifted their spatial basking distribution in a manner consistent with strong intraspecific competition. WPT also altered their spatial basking distribution after the RES removal, but in ways inconsistent with strong interspecific competition. However, we documented reduced levels of WPT basking post-removal, which may reflect a behavioral shift attributable to the lower density of the turtle community. WPT body condition also increased after we removed RES, consistent with either indirect or direct competition between WPT and RES and providing the first evidence that RES can compete with a native turtle in the wild. We conclude that the negative impacts on WPT basking by RES in natural contexts are more limited than suggested by experiments with captive turtles, although wild WPT do appear to compete for food with introduced RES. Our results highlight the importance of manipulative field experiments when studying biological invasions, and the potential value of RES removal as a management strategy for WPT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.