Summary The identification of lymphocyte subsets with non-overlapping effector functions has been pivotal to the development of targeted therapies in immune mediated inflammatory diseases (IMIDs)1,2. However it remains unclear whether fibroblast subclasses with non-overlapping functions also exist and are responsible for the wide variety of tissue driven processes observed in IMIDs such as inflammation and damage3–5. Here we identify and describe the biology of distinct subsets of fibroblasts responsible for mediating either inflammation or tissue damage in arthritis. We show that deletion of FAPα+ fibroblasts suppressed both inflammation and bone erosions in murine models of resolving and persistent arthritis. Single cell transcriptional analysis identified two distinct fibroblast subsets within the FAPα+ population: FAPα+ THY1+ immune effector fibroblasts located in the synovial sub-lining, and FAPα+ THY1- destructive fibroblasts restricted to the synovial lining layer. When adoptively transferred into the joint, FAPα+ THY1- fibroblasts selectively mediate bone and cartilage damage with little effect on inflammation, whereas transfer of FAPα+ THY1+ fibroblasts resulted in a more severe and persistent inflammatory arthritis, with minimal effect on bone and cartilage. Our findings describing anatomically discrete, functionally distinct fibroblast subsets with non-overlapping functions have important implications for cell based therapies aimed at modulating inflammation and tissue damage.
S100A8/A9, also known as calprotectin or MRP8/14, is an alarmin primarily secreted by activated myeloid cells and platelets with anti-microbial, pro-inflammatory and pro-thrombotic properties. Increased plasma levels of S100A8/A9 in thrombo-inflammatory diseases are associated with thrombotic complications. We assessed the presence of S100A8/A9 in the plasma and lung autopsies from patients with COVID-19 and investigated the molecular mechanism by which S100A8/A9 affects platelet function and thrombosis. S100A8/A9 plasma levels were increased in patients with COVID-19 and sustained high levels during hospitalization correlated with poor outcomes. Heterodimeric S100A8/A9 was mainly detected in neutrophils and deposited on the vessel wall in COVID-19 lung autopsies. Immobilization of S100A8/A9 with collagen accelerated the formation of a fibrin-rich network following perfusion of recalcified blood at venous shear. In vitro, platelets adhered and partially spread on S100A8/A9 leading to the formation of distinct populations of either P-selectin or phosphatidylserine-positive platelets. Using washed platelets, soluble S100A8/A9 induced phosphatidylserine exposure but failed to induce platelet aggregation, despite GPIIb/IIIa activation and alpha-granule secretion. We identified GPIbα as the receptor for S100A8/A9 on platelets inducing the formation of procoagulant platelets with a supporting role for CD36. The effect of S100A8/A9 on platelets was abolished by recombinant GPIbα ectodomain, platelets from Bernard-Soulier Syndrome patient with GPIb-IX-V deficiency and platelets from mice deficient in the extracellular domain of GPIbα. In conclusion, we identified the S100A8/A9-GPIbα interaction as a novel targetable prothrombotic pathway inducing procoagulant platelets and fibrin formation, in particular in diseases associated with high levels of S100A8/A9, such as COVID-19.
Dysregulation of leukocyte trafficking, lipid metabolism, and other metabolic processes are the hallmarks that underpin and drive pathology in obesity. Current clinical management targets alternations in lifestyle choices (e.g. exercise, weight loss) to limit the impact of the disease. Crucially, re-gaining control over the pathogenic cellular and molecular processes may offer an alternative, complementary strategy for obese patients. Here we investigate the impact of the immunopeptide, PEPITEM, on pancreas homeostasis and leukocyte trafficking in mice on high-fed obesogenic diet (HFD). Both prophylactic and therapeutic treatment with PEPITEM alleviated the effects of HFD on the pancreas, reducing pancreatic beta cell size. Moreover, PEPITEM treatment also limited T-cell trafficking (CD4+ T-cells and KLRG1+ CD3+ T-cells) to obese visceral, but not subcutaneous, adipose tissue. Similarly, PEPITEM treatment reduced macrophage numbers within the peritoneal cavity of mice on HFD diet at both 6 and 12 weeks. By contrast, PEPITEM therapy elevated numbers of T and B cells were observed in the secondary lymphoid tissues (e.g. spleen and inguinal lymph node) when compared to the untreated HFD controls. Collectively our data highlights the potential for PEPITEM as a novel therapy to combat the systemic low-grade inflammation experienced in obesity and minimize the impact of obesity on pancreatic homeostasis. Thus, offering an alternative strategy to reduce the risk of developing obesity-related co-morbidities, such as type 2 diabetes mellitus, in individuals at high risk and struggling to control their weight through lifestyle modifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.