The role of glycoprotein VI (GPVI) in platelets was investigated in 3 families bearing an insertion within the GP6 gene that introduces a premature stop codon prior to the transmembrane domain, leading to expression of a truncated protein in the cytoplasm devoid of the transmembrane region. Western blotting and flow cytometry of GP6hom (homozygous) platelets confirmed loss of the full protein. The level of the Fc receptor γ-chain, which associates with GPVI in the membrane, was partially reduced, but expression of other receptors and signaling proteins was not altered. Spreading of platelets on collagen and von Willebrand factor (which supports partial spreading) was abolished in GP6hom platelets, and spreading on uncoated glass was reduced. Anticoagulated whole blood flowed over immobilized collagen or a mixture of von Willebrand factor, laminin, and rhodocytin (noncollagen surface) generated stable platelet aggregates that express phosphatidylserine (PS). Both responses were blocked on the 2 surfaces in GP6hom individuals, but adhesion was not altered. Thrombin generation was partially reduced in GP6hom blood. The frequency of the GP6het (heterozygous) variant in a representative sample of the Chilean population (1212 donors) is 2.9%, indicating that there are ∼4000 GP6hom individuals in Chile. These results demonstrate that GPVI supports aggregation and PS exposure under flow on collagen and noncollagen surfaces, but not adhesion. The retention of adhesion may contribute to the mild bleeding diathesis of GP6hom patients and account for why so few of the estimated 4000 GP6hom individuals in Chile have been identified.
A lack of models that recapitulate the complexity of human bone marrow has hampered mechanistic studies of normal and malignant hematopoiesis and the validation of novel therapies. Here, we describe a step-wise, directed-differentiation protocol in which organoids are generated from iPSCs committed to mesenchymal, endothelial and hematopoietic lineages. These 3-dimensional structures capture key features of human bone marrow – stroma, lumen-forming sinusoids and myeloid cells including pro-platelet forming megakaryocytes. The organoids supported the engraftment and survival of cells from patients with blood malignancies, including cancer types notoriously difficult to maintain ex vivo. Fibrosis of the organoid occurred following TGFβ stimulation and engraftment with myelofibrosis but not healthy donor-derived cells, validating this platform as a powerful tool for studies of malignant cells and their interactions within a human bone marrow-like milieu. This enabling technology is likely to accelerate discovery and prioritization of novel targets for bone marrow disorders and blood cancers.
Objective: Fibrin is considered to strengthen thrombus formation via integrin αIIbβ3, but recent findings indicate that fibrin can also act as ligand for platelet glycoprotein VI. Approach and Results: To investigate the thrombus-forming potential of fibrin and the roles of platelet receptors herein, we generated a range of immobilized fibrin surfaces, some of which were cross-linked with factor XIIIa and contained VWF-BP (von Willebrand factor-binding peptide). Multicolor microfluidics assays with whole-blood flowed at high shear rate (1000 s −1 ) indicated that the fibrin surfaces, regardless of the presence of factor XIIIa or VWF-BP, supported platelet adhesion and activation (P-selectin expression), but only microthrombi were formed consisting of bilayers of platelets. Fibrinogen surfaces produced similar microthrombi. Markedly, tiggering of coagulation with tissue factor or blocking of thrombin no more than moderately affected the fibrin-induced microthrombus formation. Absence of αIIbβ3 in Glanzmann thrombasthenia annulled platelet adhesion. Blocking of glycoprotein VI with Fab 9O12 substantially, but incompletely reduced platelet secretion, Ca 2+ signaling and aggregation, while inhibition of Syk further reduced these responses. In platelet suspension, glycoprotein VI blockage or Syk inhibition prevented fibrin-induced platelet aggregation. Microthrombi on fibrin surfaces triggered only minimal thrombin generation, in spite of thrombin binding to the fibrin fibers. Conclusions: Together, these results indicate that fibrin fibers, regardless of their way of formation, act as a consolidating surface in microthrombus formation via nonredundant roles of platelet glycoprotein VI and integrin αIIbβ3 through signaling via Syk and low-level Ca 2+ rises.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.