Natural insecticides from plant origin against mosquito vectors have been the main concern for research due to their high level of eco-safety. Control of mosquitoes in their larval stages are an ideal method since Aedes larvae are aquatic, thus it is easier to deal with them in this habitat. The present study was specifically conducted to explore the larvicidal efficacy of different plant parts of Ipomoea cairica (L.) or railway creeper crude extract obtained using two different solvents; methanol and acetone against late third-stage larvae of Aedes albopictus (Skuse) and Aedes aegypti (L.) (Diptera: Culicidae). Plant materials of I. cairica leaf, flower, and stem were segregated, airdried, powdered, and extracted using Soxhlet apparatus. Larvicidal bioassays were performed by using World Health Organization standard larval susceptibility test method for each species which were conducted separately for different concentration ranging from 10 to 450 ppm. Both acetone and methanol extracts showed 100% mortality at highest concentration tested (450 ppm) after 24 h of exposure. Results from factorial ANOVA indicated that there were significant differences in larvicidal effects between mosquito species, solvent used and plant parts ( F = 5.71, df = 2, P < 0.05). The acetone extract of I. cairica leaf showed the most effective larvicidal action in Ae. aegypti with LC 50 of 101.94 ppm followed by Ae. albopictus with LC 50 of 105.59 ppm compared with other fractions of I. cairica extract obtained from flower, stem, and when methanol are used as solvent. The larvae of Ae. aegypti appeared to be more susceptible to I. cairica extract with lower LC 50 value compared with Ae. albopictus ( F = 8.83, df = 1, P < 0.05). Therefore, this study suggests that the acetone extract of I. cairica leaf can be considered as plant-derived insecticide for the control of Aedes mosquitoes. This study quantified the larvicidal property of I. cairica extract, providing information on lethal concentration that may have potential for a more eco-friendly Aedes mosquito control program.
The Hymenocallis littoralis, an ornamental and medicinal plant, had been traditionally used for wound healing. In the present study, an analytical method using HPLC with ultraviolet detection was developed for the quantification of lycorine in the extracts of different parts of wild plant and tissue culture samples of H. littoralis. The separation was achieved using a reversed-phase column. The method was found to be accurate, repeatable, and sensitive for the quantification of minute amount of lycorine present in the samples. The highest lycorine content was found in the bulb extract (2.54 ± 0.02 μg/mg) whereas the least was in the root extract (0.71 ± 0.02 μg/mg) of the wild plants. Few callus culture samples had high content of lycorine, comparable to that of wild plants. The results showed that plant growth regulators, 2,4-dichlorophenoxyacetic acid (2,4-D) alone at 4.5 μM (2.58 ± 0.38 μg/mg) or a combination of 2,4-D at 9.00 μM with 4.5 μM of 6-benzylaminopurine (BAP), were the optimum concentrations for the production of high lycorine (2.45 ± 0.15 μg/mg) content in callus culture. The present analytical method could be of value for routine quantification of lycorine in the tissue culture production and standardization of the raw material or extracts of H. littoralis.
Mokara orchids comes with variety of hybrids that have unique and highly variable types of characteristics such as petal colour, shape, size and other floral characteristics that make it very important economically and aesthetically. This study was conducted to evaluate on its histological and scanning electron microscopy analyses that make its PLBs to be a desirable biotechnological explant in propagation of this orchid as well as its importance in many biotechnological researches. Histological observation in Mokara Broga giant indicated the presence of meristematic tissues that are vital for biotechnological research such as genetic transformation, cryopreservation, micropropagation and others. It also indicated the presence of shoot primordia. Scanning electron microscopy analysis also indicated the developmental characteristics of PLBs in detail. Both analyses showed that the maturation of PLBs and gradual formation of shoot leaf primordial occurs through somatic embryogenesis and PLBs are vital explant in many plant tissue culture researches such as genetic transformation, cryopreservation, micropropagation and others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.