Purpose Interleukin-15 (IL-15) has significant potential in cancer immunotherapy as an activator of antitumor CD8 T and natural killer (NK) cells. The primary objectives of this trial were to determine safety, adverse event profile, dose-limiting toxicity, and maximum-tolerated dose of recombinant human IL-15 (rhIL-15) administered as a daily intravenous bolus infusion for 12 consecutive days in patients with metastatic malignancy. Patients and Methods We performed a first in-human trial of Escherichia coli–produced rhIL-15. Bolus infusions of 3.0, 1.0, and 0.3 μg/kg per day of IL-15 were administered for 12 consecutive days to patients with metastatic malignant melanoma or metastatic renal cell cancer. Results Flow cytometry of peripheral blood lymphocytes revealed dramatic efflux of NK and memory CD8 T cells from the circulating blood within minutes of IL-15 administration, followed by influx and hyperproliferation yielding 10-fold expansions of NK cells that ultimately returned to baseline. Up to 50-fold increases of serum levels of multiple inflammatory cytokines were observed. Dose-limiting toxicities observed in patients receiving 3.0 and 1.0 μg/kg per day were grade 3 hypotension, thrombocytopenia, and elevations of ALT and AST, resulting in 0.3 μg/kg per day being determined the maximum-tolerated dose. Indications of activity included clearance of lung lesions in two patients. Conclusion IL-15 could be safely administered to patients with metastatic malignancy. IL-15 administration markedly altered homeostasis of lymphocyte subsets in blood, with NK cells and γδ cells most dramatically affected, followed by CD8 memory T cells. To reduce toxicity and increase efficacy, alternative dosing strategies have been initiated, including continuous intravenous infusions and subcutaneous IL-15 administration.
The protein portion of the immunosuppressive glycoprotein uromodulin is identical to the Tamm-Horsfall urinary glycoprotein and is synthesized in the kidney. Evidence that the glycoproteins are the same is based on amino acid sequence identity, immunologic cross-reactivity, and tissue localization to the thick ascending limb of Henle's loop. Nucleic acid sequencing of clones for uromodulin isolated from a complementary DNA bank from human kidney predicts a protein 639 amino acids in length, including a 24--amino acid leader sequence and a cysteine-rich mature protein with eight potential glycosylation sites. Uromodulin and preparations of Tamm-Horsfall glycoprotein bind to recombinant murine interleukin-1 (rIL-1) and human rIL-1 alpha, rIL-1 beta, and recombinant tumor necrosis factor (rTNF). Uromodulin isolated from urine of pregnant women by lectin adherence is more immunosuppressive than material isolated by the original salt-precipitation protocol of Tamm and Horsfall. Immunohistologic studies demonstrate that rIL-1 and rTNF bind to the same area of the human kidney that binds to antiserum specific for uromodulin. Thus, uromodulin (Tamm-Horsfall glycoprotein) may function as a unique renal regulatory glycoprotein that specifically binds to and regulates the circulating activity of a number of potent cytokines, including IL-1 and TNF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.