Proso millet (Panicum miliaceum L.) is a warm season grass with a growing season of 60–100 days. It is a highly nutritious cereal grain used for human consumption, bird seed, and/or ethanol production. Unique characteristics, such as drought and heat tolerance, make proso millet a promising alternative cash crop for the Pacific Northwest (PNW) region of the United States. Development of proso millet varieties adapted to dryland farming regions of the PNW could give growers a much-needed option for diversifying their predominantly wheat-based cropping systems. In this review, the agronomic characteristics of proso millet are discussed, with emphasis on growth habits and environmental requirements, place in prevailing crop rotations in the PNW, and nutritional and health benefits. The genetics of proso millet and the genomic resources available for breeding adapted varieties are also discussed. Last, challenges and opportunities of proso millet cultivation in the PNW are explored, including the potential for entering novel and regional markets.
Quinoa (Chenopodium quinoa Willd.) has gained considerable attention worldwide during the past decade due to its nutritional and health benefits. However, its susceptibility to high temperatures has been reported as a serious obstacle to its global production. The objective of this study was to evaluate quinoa growth and pollen morphology in response to high temperatures. Pollen morphology and viability, plant growth and seed set, and several physiological parameters were measured at anthesis in two genotypes of quinoa subjected to day/night temperatures of 22/16°C as a control treatment and 40/24°C as the heat stress treatment. Our results showed that heat stress reduced the pollen viability between 30% and 70%. Although no visible morphological differences were observed on the surface of the pollen between the heat‐stressed and non‐heat‐stressed treatments, the pollen wall (intine and extine) thickness increased due to heat stress. High temperature did not affect seed yield, seed size and leaf greenness. On the other hand, high temperature improved the rate of photosynthesis. We found that quinoa has a high plasticity in response to high temperature, though pollen viability and pollen wall structure were affected by high temperatures in anthesis stage. This study is also the first report of quinoa pollen being trinucleate.
Common bunt, caused by the seedborne and soilborne pathogens Tilletia caries and T. laevis, has re-emerged as a major disease in organic wheat. In conventional agriculture, common bunt is routinely managed with the use of synthetic chemical seed treatments. For this reason, common bunt is a relatively unimportant disease in conventional agriculture. However, since synthetic chemical inputs are prohibited in organic agriculture, common bunt is a major threat once more in organic wheat and seed production. The challenge today is to manage the disease without the use of chemical seed treatments. This review reports on the management of common bunt under organic farming systems, mainly through host resistance and organic seed treatments. We report the history of screening wheat germplasm for bunt resistance, the search for new sources of resistance, and identification and mapping of bunt resistance genes. Since the pathogen has a gene-for-gene relationship with the host, this review also includes a summary of work on pathogen race identification and virulence patterns of field isolates. Also included are studies on the physiological and molecular basis of host resistance. Alternative seed treatments are discussed, including physical seed treatments, and microbial-based and plant-based treatments acceptable in organic systems. The article concludes with a brief discussion on the current gaps in research on the management of common bunt in organic wheat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.