An extraordinarily large degree of tunability in geometry and dimension is demonstrated in films of a self-assembled block copolymer. A poly(2-vinylpyridine-b-dimethylsiloxane) block copolymer with highly incompatible blocks was spun-cast on patterned substrates and treated with various solvent vapors. The degree of selective swelling in the poly(2-vinylpyridine) matrix block could be controlled over an extensive range, leading to the formation of various microdomain morphologies such as spheres, cylinders, hexagonally perforated lamellae, and lamellae from the same block copolymer. The systematic control of swelling ratio and the choice of solvent vapors offer the unusual ability to control the width of very well-ordered linear features within a range between 6 and 31 nm. This methodology is particularly useful for nanolithography based on directed self-assembly in that a single block copolymer film can form microdomains with a broad range of geometries and sizes without the need to change molecular weight or volume fraction.
Nanotransfer printing technology offers outstanding simplicity and throughput in the fabrication of transistors, metamaterials, epidermal sensors and other emerging devices. Nevertheless, the development of a large-area sub-50 nm nanotransfer printing process has been hindered by fundamental reliability issues in the replication of high-resolution templates and in the release of generated nanostructures. Here we present a solvent-assisted nanotransfer printing technique based on high-fidelity replication of sub-20 nm patterns using a dual-functional bilayer polymer thin film. For uniform and fast release of nanostructures on diverse receiver surfaces, interface-specific adhesion control is realized by employing a polydimethylsiloxane gel pad as a solvent-emitting transfer medium, providing unusual printing capability even on biological surfaces such as human skin and fruit peels. Based on this principle, we also demonstrate reliable printing of high-density metallic nanostructures for non-destructive and rapid surface-enhanced Raman spectroscopy analyses and for hydrogen detection sensors with excellent responsiveness.
3D stacking of plasmonic nanostructures is achieved using a solvent-assisted nanotransfer printing (S-nTP) technique to provide extremely dense and regular hot spot arrays for highly sensitive surface-enhanced Raman spectroscopy (SERS) analysis. Moreover, hybrid plasmonic nanostructures obtained by printing the nanowires on a continuous metal film or graphene surface show significantly intensified SERS signals due to vertical plasmonic coupling.
The synergetic combination of low‐temperature thermal assistance with solvent annealing for the self‐assembly of block copolymers with a large Flory‐Huggins interaction parameter simultaneously achieves sub‐10 nm resolution and sub‐1 minute annealing time. It is shown that this method is applicable to different geometries of patterns such as nanoscale dots, lines, and holes.
An extraordinarily facile sub-10 nm fabrication method using the synergic combination of nanotransfer printing and the directed self-assembly of block copolymers is introduced. The approach is realized by achieving the uniform self-assembly of polydimethylsiloxane (PDMS)-containing block copolymers on a PDMS mold through the stabilization of the block copolymer thin films. This simple printing method can be applied on oxides, metals, polymers, and non-planar substrates without pretreatments. The fabrication of well-aligned metallic and polymeric functional nanostructures and crossed wire structures is also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.