We propose a novel and fast multiscale feature detection and description approach that exploits the benefits of nonlinear scale spaces. Previous attempts to detect and describe features in nonlinear scale spaces are highly time consuming due to the computational burden of creating the nonlinear scale space. In this paper we propose to use recent numerical schemes called Fast Explicit Diffusion (FED) embedded in a pyramidal framework to dramatically speed-up feature detection in nonlinear scale spaces. In addition, we introduce a Modified-Local Difference Binary (M-LDB) descriptor that is highly efficient, exploits gradient information from the nonlinear scale space, is scale and rotation invariant and has low storage requirements. We present an extensive evaluation that shows the excellent compromise between speed and performance of our approach compared to state-of-the-art methods such as BRISK, ORB, SURF, SIFT and KAZE.
Abstract-This paper presents a nonintrusive prototype computer vision system for monitoring a driver's vigilance in real time. It is based on a hardware system for the real-time acquisition of a driver's images using an active IR illuminator and the software implementation for monitoring some visual behaviors that characterize a driver's level of vigilance. Six parameters are calculated: Percent eye closure (PERCLOS), eye closure duration, blink frequency, nodding frequency, face position, and fixed gaze. These parameters are combined using a fuzzy classifier to infer the level of inattentiveness of the driver. The use of multiple visual parameters and the fusion of these parameters yield a more robust and accurate inattention characterization than by using a single parameter. The system has been tested with different sequences recorded in night and day driving conditions in a motorway and with different users. Some experimental results and conclusions about the performance of the system are presented.Index Terms-Driver vigilance, eyelid movement, face position, fuzzy classifier, percent eye closure (PERCLOS), visual fatigue behaviors.
Abstract-This paper presents a nonintrusive prototype computer vision system for monitoring a driver's vigilance in real time. It is based on a hardware system for the real-time acquisition of a driver's images using an active IR illuminator and the software implementation for monitoring some visual behaviors that characterize a driver's level of vigilance. Six parameters are calculated: Percent eye closure (PERCLOS), eye closure duration, blink frequency, nodding frequency, face position, and fixed gaze. These parameters are combined using a fuzzy classifier to infer the level of inattentiveness of the driver. The use of multiple visual parameters and the fusion of these parameters yield a more robust and accurate inattention characterization than by using a single parameter. The system has been tested with different sequences recorded in night and day driving conditions in a motorway and with different users. Some experimental results and conclusions about the performance of the system are presented.Index Terms-Driver vigilance, eyelid movement, face position, fuzzy classifier, percent eye closure (PERCLOS), visual fatigue behaviors.
Abstract-This paper presents a nonintrusive prototype computer vision system for monitoring a driver's vigilance in real time. It is based on a hardware system for the real-time acquisition of a driver's images using an active IR illuminator and the software implementation for monitoring some visual behaviors that characterize a driver's level of vigilance. Six parameters are calculated: Percent eye closure (PERCLOS), eye closure duration, blink frequency, nodding frequency, face position, and fixed gaze. These parameters are combined using a fuzzy classifier to infer the level of inattentiveness of the driver. The use of multiple visual parameters and the fusion of these parameters yield a more robust and accurate inattention characterization than by using a single parameter. The system has been tested with different sequences recorded in night and day driving conditions in a motorway and with different users. Some experimental results and conclusions about the performance of the system are presented.Index Terms-Driver vigilance, eyelid movement, face position, fuzzy classifier, percent eye closure (PERCLOS), visual fatigue behaviors.
This paper presents a robot localization system for indoor environments using WiFi signal strength measure. We analyse the main causes of the WiFi signal strength variation and we experimentally demonstrate that a localization technique based on a propagation model doesn't work properly in our test-bed. We have carried out a localization system based on a priori radio-map obtained automatically from a robot navigation in the environment in a semi-autonomous way. We analyse the effect of reducing calibration effort in order to diminish practical barriers to wider adoption of this type of location measurement technique. Experimental results using a real robot moving are shown. Finally, the conclusions and future works are presented.
We present a method to monitor driver distraction based on a stereo camera to estimate the face pose and gaze of a driver in real-time. A coarse eye direction is composed with the face pose estimation to obtain the gaze and driver's fixation area in the scene, a parameter which gives much information about the distraction pattern of the driver. The system does not require any subject-specific calibration, it is robust to fast and wide head rotations and works in low lighting conditions.The system provides some consistent statistics which help psychologists to assess the driver distraction patterns under influence of different In-Vehicle Information Systems (IVIS). These statistics are objective, as the drivers are not required to report their own distraction states. The proposed gaze fixation system has been tested on a set of challenging driving experiments directed by a team of psychologists in a naturalistic driving simulator. This simulator mimics conditions present in real driving, including weather changes, manoeuvring and distractions due to IVIS. Professional drivers participated in the tests.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.