Abstract-This paper presents a nonintrusive prototype computer vision system for monitoring a driver's vigilance in real time. It is based on a hardware system for the real-time acquisition of a driver's images using an active IR illuminator and the software implementation for monitoring some visual behaviors that characterize a driver's level of vigilance. Six parameters are calculated: Percent eye closure (PERCLOS), eye closure duration, blink frequency, nodding frequency, face position, and fixed gaze. These parameters are combined using a fuzzy classifier to infer the level of inattentiveness of the driver. The use of multiple visual parameters and the fusion of these parameters yield a more robust and accurate inattention characterization than by using a single parameter. The system has been tested with different sequences recorded in night and day driving conditions in a motorway and with different users. Some experimental results and conclusions about the performance of the system are presented.Index Terms-Driver vigilance, eyelid movement, face position, fuzzy classifier, percent eye closure (PERCLOS), visual fatigue behaviors.
This paper presents a road distress detection system involving the phases needed to properly deal with fully automatic road distress assessment. A vehicle equipped with line scan cameras, laser illumination and acquisition HW-SW is used to storage the digital images that will be further processed to identify road cracks. Pre-processing is firstly carried out to both smooth the texture and enhance the linear features. Non-crack features detection is then applied to mask areas of the images with joints, sealed cracks and white painting, that usually generate false positive cracking. A seed-based approach is proposed to deal with road crack detection, combining Multiple Directional Non-Minimum Suppression (MDNMS) with a symmetry check. Seeds are linked by computing the paths with the lowest cost that meet the symmetry restrictions. The whole detection process involves the use of several parameters. A correct setting becomes essential to get optimal results without manual intervention. A fully automatic approach by means of a linear SVM-based classifier ensemble able to distinguish between up to 10 different types of pavement that appear in the Spanish roads is proposed. The optimal feature vector includes different texture-based features. The parameters are then tuned depending on the output provided by the classifier. Regarding non-crack features detection, results show that the introduction of such module reduces the impact of false positives due to non-crack features up to a factor of 2. In addition, the observed performance of the crack detection system is significantly boosted by adapting the parameters to the type of pavement.
This work describes a color Vision-based System intended to perform stable autonomous driving on unmarked roads. Accordingly, this implies the development of an accurate road surface detection system that ensures vehicle stability. Although this topic has already been documented in the technical literature by different research groups, the vast majority of the already existing Intelligent Transportation Systems are devoted to assisted driving of vehicles on marked extra urban roads and highways. The complete system was tested on the BABIECA prototype vehicle, which was autonomously driven for hundred of kilometers accomplishing different navigation missions on a private circuit that emulates an urban quarter. During the tests, the navigation system demonstrated its robustness with regard to shadows, road texture, and weather and changing illumination conditions.
There is clear evidence that investment in intelligent transportation system technologies brings major social and economic benefits. Technological advances in the area of automatic systems in particular are becoming vital for the reduction of road deaths. We here describe our approach to automation of one the riskiest autonomous manoeuvres involving vehicles -overtaking. The approach is based on a stereo vision system responsible for detecting any preceding vehicle and triggering the autonomous overtaking manoeuvre. To this end, a fuzzy-logic based controller was developed to emulate how humans overtake. Its input is information from the vision system and from a positioning-based system consisting of a differential global positioning system (DGPS) and an inertial measurement unit (IMU). Its output is the generation of action on the vehicle's actuators, i.e., the steering wheel and throttle and brake pedals. The system has been incorporated into a commercial Citroen car and tested on the private driving circuit at the facilities of our research center, CAR, with different preceding vehicles -a motorbike, car, and truck -with encouraging results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.