To determine the types of voltage-gated K+ channels controlling action potential repolarization in atrial cells, we have characterized the properties of depolarization-activated K+ channels in isolated adult rat atrial myocytes using the whole cell patch-clamp recording technique. On membrane depolarization, Ca2(+)-independent outward K+ currents in these cells begin to activate at approximately -40mV. At all test potentials, the currents activate rapidly after a delay, and there is little or no decay of the peak outward current amplitude during brief (100 ms) depolarizations. In addition, the currents show little steady-state inactivation at membrane potentials negative to -60 mV. The currents are blocked effectively by 1-5 mM 4-aminopyridine but are relatively insensitive to extracellular tetraethylammonium at concentrations up to 50 mM. Based on the measured time- and voltage-dependent properties and the pharmacological sensitivity of the currents, we suggest that the depolarization-activated K+ channels underlying the macroscopic currents in adult rat atrial myocytes are distinct from those described previously in other myocardial preparations, including adult rat ventricular myocytes. Interestingly, the outward K+ currents characterized here in isolated adult rat atrial myocytes are remarkably similar to those of several recently described "delayed rectifier" K+ channel genes isolated from rat brain cDNA libraries and expressed in Xenopus oocytes, suggesting that similar K+ currents are likely present in cells of the mammalian central nervous system.
Voltage-gated K+ channel (Kv) pore-forming (alpha) subunits of the Kv1 and Kv4 subfamilies have been cloned from heart cDNA libraries, and are thought to play roles in the generation of the transient outward K+ current, Ito. Heterologous expression of these subunits in Xenopus oocytes, however, reveals K+ currents that are quite distinct from Ito. In the experiments here, the detailed time- and voltage-dependent properties of the currents expressed in mammalian cell lines and in cardiac myocytes by Kv1.4 and Kv4.2 were examined and compared to previous findings in studies of oocytes, as well as to Ito characterized in various myocardial cells. As in oocytes, expression of Kv1.4 in HEK-293, Ltk- or neonatal rat ventricular cells reveals rapidly activating K+ currents. In contrast to the currents in oocytes, however, there are two components of inactivation of the Kv1.4-induced currents in mammalian cells, and both components are significantly slower in myocytes than in either HEK-293 or Ltk- cells. In addition, in all three cell types, recovery of Kv1.4 from steady-state inactivation is very slow, proceeding with mean time constants in the range of 6-8 s. The properties of Kv4.2-induced currents also vary with cell type and, importantly, the rates of activation, inactivation and recovery from inactivation are significantly faster in mammalian cells than in Xenopus oocytes. In HEK-293, Chinese hamster ovary (CHO) and neonatal rat ventricular cells, for example, the currents recover from steady-state inactivation with mean (+/-SD) time constants of 153+/-32 (n=12), 245+/-112 (n=10) and 86+/-38 (n=11) ms, respectively; therefore, recovery proceeds 5-10 times faster than observed for Kv4.2 in oocytes. These results emphasize the importance of the cellular expression environment in efforts to correlate endogenous K+ currents with heterologously expressed K+ channel subunits. In addition, the finding that Kv alpha subunits produce distinct K+ currents in different cells suggests that cell-type-specific associations with endogenous Kv alpha or accessory beta subunits and/or post-translational processing play roles in determining the properties of functional K+ channels.
The effects of dihydropyridine calcium antagonists on whole-cell Ca2+ and K+ currents in the neurosecretory bag cells of the marine mollusc Aplysia californica have been investigated. Nifedipine and nisoldipine blocked bag cell Ca2+ currents with effects similar to those seen previously on Ca2+ currents in cardiac muscle: both compounds appeared to interact with Ca2+ channels when they were closed, open, and inactivated. Also, as seen in cardiac cells, nifedipine apparently binds with higher affinity to Ca2+ channels when they are inactivated than when they are either closed or open. Nifedipine and nisoldipine also inhibited 2 outward K+ currents in bag cells: the “delayed rectifier” (IK) and the “A” (IA) currents. Half-maximal blockade of Ca2+ currents occurred at approximately 1.4 microM nifedipine, compared to approximately 3–5 microM for half-maximal blockade of IK and IA. The effects of these compounds on bag cell Ca2+ and K+ currents are interpreted and discussed here in terms of the “modulated receptor” model of drug action. In contrast, however, no measurable effects of nifedipine or nisoldipine were seen on Ca2+ (and/or K+) currents in several vertebrate neuronal cell types. Our results suggest that there are likely to be structural and/or conformational variations in Ca2+ channels in different cells, tissues, and/or species and also that, in some cells, Ca2+ and K+ channels might be structurally similar. These findings also suggest, therefore, that if dihydropyridine binding is used to identify Ca2+ channels, care should be taken to ensure that binding correlates closely with the Ca2+ channels of interest.
Combining in vivo retrograde labeling and in vitro electrophysiological recording techniques, we examined the distributions, densities, and biophysical properties of hyperpolarization-activated inward currents in two types of isolated, identified visual cortical projection neurons, superior colliculus-projecting (SCP) and callosal-projecting (CP) cells. In SCP cells, two kinetically distinct time-dependent hyperpolarization-activated inward current components are present. We have termed these Ih,f and Ih,s to denote the fast and slow components, respectively, of Ih activation. In CP cells, in contrast, Ih,f and Ih,s are differentially expressed. In 59% of the CP cells examined, for example, both Ih,f and Ih,s were present. The properties of the currents are indistinguishable from those recorded from SCP cells, although both Ih,f and Ih,s are expressed at significantly lower densities in this subset of CP cells (as compared to the current densities in SCP cells). Of the remaining 41% of the CP cells studied, 26% were found to express only Ih,s, and 12% of the cells expressed neither Ih,f nor Ih,s. Taken together, these results reveal that the electrical properties of CP visual cortical neurons are considerably more heterogeneous than those of SCP cells. The differential expression of Ih,f and Ih,s is expected to influence the integrated responses of different types of cortical projection neurons to excitatory and inhibitory synaptic inputs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.