Morphogenesis of the division site in caulobacters had been described as constrictive in Caulobacter spp. and septate in Asticcacaulis excentricus. However, subsequent studies of other gram-negative genera had implied that constrictive division was an artefact resulting from inadequate preservation of septa; exploration of alternatives to osmium fixation, particularly with aldehydes, was recommended. In this study, the appearance of sectioned division sites was reinvestigated in caulobacter cells prepared by 20 different procedures varying with respect to fixation agents, media, schedules, and temperatures, to dehydrating agents, and to embedding resins. Three types of division site morphogenesis were observed: constriction in C. bacteroides and C. crescentus, partial septation in C. leidyi, and complete, undivided septation in A. excentricus and A. biprosthecum. The anatomy of the division site depended on the bacterial strain, not on the method of preparation of the cells for sectioning. These studies confirm the earlier observations on osmium-fixed caulobacter cells and lead to the general conclusion that gram-negative bacteria with tapered poles probably divide by constriction, whereas septation results in blunt cell poles. A pattern of spiral, rather than circular, insertion of new envelope subunits at the cell equator is proposed as a basic developmental difference between constrictive and septate fission in gram-negative bacteria. Since caulobacter prosthecae can develop as extensions of tapered poles formed by constriction, whereas subpolar or lateral prosthecae occur in species with blunt poles resulting from septation, the site of formation of a thick septum appears unsuitable as a site of subsequent envelope outgrowth.
Peptidoglycan sacculi free of poly-beta-hydroxybutyric acid were prepared from whole cells of four species of Caulobacter and two species of Asticcacaluis and from morphological mutants of Caulobacter crescentus and Caulobacter leidyi. Acid hydrolysates of the sacculi were analyzed quantitatively, and each of the hydrolysates was found to contain significant amounts of only five ninhydrin-reactive compounds: alanine, glutamic acid, alpha , omega-diaminopimelic acid, muramic acid, and glucosamine. Four types of peptidoglycans were distinguishable on the basis of the molar ratios among these five compounds. The respective ratios were as follows: in C. leidyi, 2:1:1:1:0.8; in Asticcacaulis biprosthecum, 1.7:1.6:1.1:0.7; in the cells of the remaining species, 2:1:1:1.2:0.8; and in stalks shed by the abscission mutant 2NY66, 2:1:1:1:1.67. Thus, in addition to some species differences among these caulobacters, it was found that the peptidoglycan sacculus of the stalked C. crescentus cell is chemically differentiated; the cellular peptidoglycan is richer in muramic acid than is the peptidoglycan of typical gram-negative bacteria, and the peptidoglycan of the stalk is correspondingly rich in glucosamine. Empirical formulas for the repeating units of the peptidoglycans have been inferred on the basis of the molar ratios of their amino components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.