Strojno učenje te posebno pripadajuće potpodručje poznato kao duboko učenje pokreću novedisruptivne tehnologije i nedavna postignuća u različitim industrijama. Ovaj rad koristi do određenerazine istu tehnologiju pri izradi mobilne aplikacije za edukacijske svrhe, a koja omogućuje identifikacijunepoznatih zastava pomoću umjetne inteligencije. Kako bi aplikacija bila funkcionalna i efikasna,potrebno je bilo kreirati vlastiti podatkovni skup i obraditi ga na razne načine kako bi se osiguralazbirka podataka koja odražava podatke iz stvarnoga svijeta. Ova zbirka bi se potom koristila kaopodatkovni ulaz za razvijanje modela, koji se razvija unutar okruženja TensorFlow. Nakon što je modelrazvijen, implementiran je kao dio mobilne aplikacije programirane Flutterom. Funkcionalnost mobilneaplikacije i točnost modela ispitana je na brojci od preko 100 novih slika koje model prethodno nijevidio niti je nad njima bio treniran. Rezultat ovog ispitivanja mogao bi se smatrati odrazom okvirnespremnosti i primjenjivosti ove aplikacije u stvarnom svijetu.
Machine learning and more specifically its subfield known as deep learning have been driving new disruptive technologies and recent accomplishments in various industries. This paper applies to some extent the same technology to develop a mobile application for educational purposes, that allows one to identify unknown flags with the help of artificial intelligence. For the application to be functional and effective, a custom dataset had to be created and processed in various ways in order to provide a collection of data that resembles data from the real world. The collection would then be used as the input data for constructing the model, which is developed within the framework TensorFlow. Once the model was developed, it was implemented as part of a mobile application programmed with Flutter. The functionality of the mobile application and the model' s accuracy are then put to the test against over a hundred of new images the model has not seen previously or been trained on. The result of this evaluation could be considered an estimate of the readiness and usability of the application in a real-world scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.