Neurodegenerative diseases feature specific misfolded or misassembled proteins associated with neurotoxicity. The precise mechanisms by which protein aggregates first arise in the majority of sporadic cases have remained unclear. Likely, a first critical mass of misfolded proteins starts a vicious cycle of a prion-like expansion. We hypothesize that viruses, having evolved to hijack the host cellular machinery for catalyzing their replication, lead to profound disturbances of cellular proteostasis, resulting in such a critical mass of protein aggregates. Here, we investigated the effect of influenza virus (H1N1) strains on proteostasis of proteins associated with neurodegenerative diseases in Lund human mesencephalic dopaminergic cells in vitro and infection ofRagknockout mice in vivo. We demonstrate that acute H1N1 infection leads to the formation of α-synuclein and Disrupted-in-Schizophrenia 1 (DISC1) aggregates, but not of tau or TDP-43 aggregates, indicating a selective effect on proteostasis. Oseltamivir phosphate, an antiinfluenza drug, prevented H1N1-induced α-synuclein aggregation. As a cell pathobiological mechanism, we identified H1N1-induced blocking of autophagosome formation and inhibition of autophagic flux. In addition, α-synuclein aggregates appeared in infected cell populations connected to the olfactory bulbs following intranasal instillation of H1N1 inRagknockout mice. We propose that H1N1 virus replication in neuronal cells can induce seeds of aggregated α-synuclein or DISC1 that may be able to initiate further detrimental downstream events and should thus be considered a risk factor in the pathogenesis of synucleinopathies or a subset of mental disorders. More generally, aberrant proteostasis induced by viruses may be an underappreciated factor in initiating protein misfolding.
Novel drug targets can be identified by differential analysis of RNA transcripts isolated from cancer cell lines and tissues. We have extended this approach by analyzing differences in gene expression resulting from the drug treatment of transformed and nontransformed cells. A mouse mammary epithelial cell line (C57MG), which conditionally expresses the Wnt-1 proto-oncogene, was left untreated or treated with retinoic acid in the presence or absence of Wnt-1 expression. The experiment was performed in triplicate, and RNA extracted from the four samples was analyzed by hybridization to over 12,000 unique oligonucleotide probe sets. Reproducible alterations in gene expression that occurred in response to retinoic acid, Wnt-1, or retinoic acid plus Wnt-1 relative to untreated cells were identified. Greater attention was given to genes encoding cell surface antigens that were selectively up-regulated by the combination of Wnt-1 and retinoic acid. These genes included the tumor necrosis factor family 4-1BB ligand, ephrin B1, stra6, autotaxin, and ISLR. Administration of retinoic acid to mice bearing tumors driven by activation of the Wnt-1/-catenin pathway resulted in increased expression of stra6 in the tumors but not in normal tissue. In principal, the therapeutic index of antibodies directed against these antigens should be enhanced by co-administration of retinoic acid.The aberrant growth and survival of cancer cells is attributed to underlying genetic defects that alter normal cellular homeostasis. In the case of colorectal cancer, inactivation of the adenomatous polyposis coli tumor suppressor occurs early in tumor progression and provides a growth advantage resulting from the inappropriate activation of genes such as cyclin D, matrilysin, and c-myc (1-3). These genes are targets of T cell factor/lymphoid enhancer factor (TCF/LEF) 1 transcription factors that are activated by their interaction with -catenin, a protein that is normally down-regulated by adenomatous polyposis coli (4, 5). The up-regulation of this signaling pathway in cancer can also result from missense mutations in the -catenin gene that render the -catenin protein refractory to downregulation by adenomatous polyposis coli (6, 7). Mutations in -catenin have been identified in a wide variety of human tumors and are particularly prevalent in human hepatocellular cancer (5). Activation of -catenin signaling also occurs when the cell surface frizzled receptors are stimulated by the secreted Wnt ligands (8). Although it is not known whether the Wnt ligands themselves contribute to human cancers, early experiments have demonstrated that their overexpression in mouse mammary tissue was tumorigenic (9). Thus, Wnt signaling represents a mechanism that contributes to the progression of a high percentage of human cancers for which appropriate animal and cell culture models are available.Signals emanating from the Wnt receptors are thought to proceed via the activation of disheveled, which in turn, negatively regulates glycogen synthase kinase 3 (10...
Mutational activation of the Wnt signaling pathway is a common early event in colorectal tumorigenesis, and the identification of target genes regulated by this pathway will provide a better understanding of tumor progression. Gene expression profiling on oligonucleotide microarrays revealed reduced expression of the immediate early genes fos and fosB following stimulation of cells by Wnt-1. Further analysis demonstrated that serum or 12-O-tetradecanoylphorbol-13-acetate activation of several immediate early genes including fos, fosB, junB, and egr1 was inhibited by Wnt signaling. Wnt signaling inhibited transcriptional activation driven by the serum response element without altering the activation of the extracellular signal-regulated kinase cascade or ternary complex formation at the fos serum response element promoter. The Wnt-mediated repression of cFos, FosB, and JunB expression was consistent with a decrease in their binding to an AP-1 promoter element and decreased target gene transcription. The expression of fos, fosB, junB, and egr1 was also repressed in human colon tumors relative to patient matched normal tissue. By contrast, the fos family member fra-1 was up-regulated in the human colon tumors, suggesting a compensatory mechanism for the reduction in fos and fosB expression. The results indicate that Wnt signaling can repress the expression of certain immediate early genes, and that this effect is consistent with changes in gene expression observed in human colorectal tumors.
Wnt ligand-driven tumor growth is inhibited by the soluble Wnt inhibitor Fzd8CRD, but the mechanism through which this effect is mediated is unknown. In the MMTV-Wnt1 mouse model, regression of mammary tumors by Fzd8CRD treatment coincides with an acute and strong induction of insulin-like growth factor (IGF)-binding protein IGFBP5, an antagonist of IGF signaling that mediates involution of mammary gland in females after offspring are weaned. In this study, we show that repression of this IGF inhibitory pathway is crucial for Wntdriven growth of mammary tumors. We found that IGFBP5 regulation was mediated by the b-catenin-dependent Wnt pathway. Wnt, in addition to IGF ligands, facilitated tumor growth by paracrine communication among tumor cells. In addition, Fzd8CRD caused precocious induction of IGFBP5 in normal mammary glands undergoing involution, implying an acceleration of the involution process by inhibition of Wnt signaling. The molecular and phenotypic parallel between tumor regression and mammary gland involution suggests that Wntdriven mammary tumors use the same growth mechanism as proliferating normal mammary glands. Cancer Res; 72(6); 1568-78. Ó2012 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.