Neurotransmitter release is achieved through the fusion of synaptic vesicles with the neuronal plasma membrane (exocytosis). Vesicles are then retrieved from the plasma membrane (endocytosis). It was hypothesized more than 3 decades ago that endosomes participate in vesicle recycling, constituting a slow endocytosis pathway required especially after prolonged stimulation. This recycling model predicts that newly endocytosed vesicles fuse with an endosome, which sorts (organizes) the molecules and buds exocytosis-competent vesicles. We analyzed here the endosome function using hippocampal neurons, isolated nerve terminals (synaptosomes), and PC12 cells by stimulated emission depletion microscopy, photooxidation EM, and several conventional microscopy assays. Surprisingly, we found that endosomal sorting is a rapid pathway, which appeared to be involved in the recycling of the initial vesicles to be released on stimulation, the readily releasable pool. In agreement with the endosomal model, the vesicle composition changed after endocytosis, with the newly formed vesicles being enriched in plasma membrane proteins. Vesicle proteins were organized in clusters both in the plasma membrane (on exocytosis) and in the endosome. In the latter compartment, they segregated from plasma membrane components in a process that is likely important for sorting/budding of newly developed vesicles from the endosome.
Chemical synapses contain substantial numbers of neurotransmitter-filled synaptic vesicles, ranging from approximately 100 to many thousands. The vesicles fuse with the plasma membrane to release neurotransmitter and are subsequently reformed and recycled. Stimulation of synapses in vitro generally causes the majority of the synaptic vesicles to release neurotransmitter, leading to the assumption that synapses contain numerous vesicles to sustain transmission during high activity. We tested this assumption by an approach we termed cellular ethology, monitoring vesicle function in behaving animals (10 animal models, nematodes to mammals). Using FM dye photooxidation, pHluorin imaging, and HRP uptake we found that only approximately 1-5% of the vesicles recycled over several hours, in both CNS synapses and neuromuscular junctions. These vesicles recycle repeatedly, intermixing slowly (over hours) with the reserve vesicles. The latter can eventually release when recycling is inhibited in vivo but do not seem to participate under normal activity. Vesicle recycling increased only to ≈5% in animals subjected to an extreme stress situation (frog predation on locusts). Synapsin, a molecule binding both vesicles and the cytoskeleton, may be a marker for the reserve vesicles: the proportion of vesicles recycling in vivo increased to 30% in synapsin-null Drosophila. We conclude that synapses do not require numerous reserve vesicles to sustain neurotransmitter release and thus may use them for other purposes, examined in the accompanying paper.pools | styryl dyes | vesicle cycle | shibire |
The spatial organization of transmembrane receptors is a critical step in signal transduction and receptor trafficking in cells. Transmembrane receptors engage in lateral homotypic and heterotypic cis-interactions as well as intercellular trans-interactions that result in the formation of signalling foci for the initiation of different signalling networks. Several aspects of ligand-induced receptor clustering and association with signalling proteins are also influenced by the lipid composition of membranes. Thus, lipid microdomains have a function in tuning the activity of many transmembrane receptors by positively or negatively affecting receptor clustering and signal transduction. We review the current knowledge about the functions of clustering of transmembrane receptors and lipid-protein interactions important for the spatial organization of signalling at the membrane.
These authors contributed equally to the work.Early endosomes are well-established acceptor compartments of endocytic vesicles in many cell types. Little evidence of their existence or function has been obtained in synapses, and it is generally believed that synaptic vesicles recycle without passing through an endosomal intermediate. We show here that the early endosomal SNARE proteins are enriched in synaptic vesicles. To investigate their function in the synapse, we isolated synaptic nerve terminals (synaptosomes), stimulated them in presence of different fluorescent markers to label the recycling vesicles and used these vesicles in in vitro fusion assays. The recently endocytosed vesicles underwent homotypic fusion. They also fused with endosomes from PC12 and BHK cells. The fusion process was dependent upon NSF activity. Moreover, fusion was dependent upon the early endosomal SNAREs but not upon the SNAREs involved in exocytosis. Our results thus show that at least a fraction of the vesicles endocytosed during synaptic activity are capable of fusing with early endosomes and lend support to an involvement of endosomal intermediates during recycling of synaptic vesicles.
Soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins mediate organelle fusion in the secretory pathway. Different fusion steps are catalyzed by specific sets of SNARE proteins. Here we have used the SNAREs mediating the fusion of early endosomes and exocytosis, respectively, to investigate how pairing specificity is achieved. Although both sets of SNAREs promiscuously assemble in vitro, there is no functional crosstalk. We now show that they not only colocalize to overlapping microdomains in the membrane of early endosomes of neuroendocrine cells, but also form cis-complexes promiscuously, with the proportion of the different complexes being primarily dependent on mass action. Addition of soluble SNARE molecules onto native membranes revealed preference for cognate SNAREs. Furthermore, we found that SNAREs are laterally segregated at endosome contact sites, with the exocytotic synaptobrevin being depleted. We conclude that specificity in endosome fusion is mediated by the following two synergistically operating mechanisms: (i) preference for the cognate SNARE in 'trans' interactions and (ii) lateral segregation of SNAREs, leading to relative enrichment of the cognate ones at the prospective fusion sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.