SNPs (Single Nucleotide Polymorphisms) include millions of changes in human genome, and therefore, are promising tools for disease-gene association studies. However, this kind of studies is constrained by the high expense of genotyping millions of SNPs. For this reason, it is required to obtain a suitable subset of SNPs to accurately represent the rest of SNPs. For this purpose, many methods have been developed to select a convenient subset of tag SNPs, but all of them only provide low prediction accuracy. In the present study, a brand new method is developed and introduced as GA-SVM with parameter optimization. This method benefits from support vector machine (SVM) and genetic algorithm (GA) to predict SNPs and to select tag SNPs, respectively. Furthermore, it also uses particle swarm optimization (PSO) algorithm to optimize C and γ parameters of support vector machine. It is experimentally tested on a wide range of datasets, and the obtained results demonstrate that this method can provide better prediction accuracy in identifying tag SNPs compared to other methods at present.
The Vehicle Routing Problem (VRP) is one of the most discussed and researched topics nowadays. The VRP is briefly defined as the problem of identifying the best route to reduce distribution costs and improve the quality of service provided to customers. The Capacitated VRP (CVRP) is one of the most commonly researched among the VRP types. Therefore, the CVRP was studied in this paper and a new population based simulated annealing algorithm was proposed. In the algorithm, three different route development operators were used, which are exchange, insertion and reversion operators. It was tested on 63 well-known benchmark instances in the literature. The results showed that the optimum routes could be determined for the 23 instances.
The development and improvement of control techniques has attracted many researchers for many years.Especially in the controller design of complex and nonlinear systems, various methods have been proposed to determine the ideal control parameters. One of the most common and effective of these methods is determining the controller parameters with optimization algorithms.In this study, LQR controller design was implemented for position control of the double inverted pendulum system on a cart. First of all, the equations of motion of the inverted pendulum system were obtained by using Lagrange formulation. These equations were linearized by Taylor series expansion around the equilibrium position to obtain the state-space model of the system. The LQR controller parameters required to control the inverted pendulum system were determined by using a trial and error method. The determined parameters were optimized by using five different configurations of three different optimization algorithms (GA, PSO, and ABC). The LQR controller parameters obtained as a result of the optimization study with five different configurations of each algorithm were applied to the system and the obtained results were compared with each other. In addition, the configurations that yielded the best control results for each algorithm were compared with each other and the control results were evaluated in terms of response speed and response smoothness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.