Abstract-Back and Forth Error Compensation and Correction (BFECC) was recently developed for interface computation using a level set method. We show that BFECC can be applied to reduce dissipation and diffusion encountered in a variety of advection steps, such as velocity, smoke density, and image advections on uniform and adaptive grids and on a triangulated surface. BFECC can be implemented trivially as a small modification of the first-order upwind or semi-Lagrangian integration of advection equations. It provides second-order accuracy in both space and time. When applied to level set evolution, BFECC reduces volume loss significantly. We demonstrate the benefits of this approach on image advection and on the simulation of smoke, bubbles in water, and the highly dynamic interaction between water, a solid, and air. We also apply BFECC to dye advection to visualize vector fields.
Figure 1: When the level set is advected by the BFECC [Dupont and Liu 2003] method, the simulation of a rising bubble produces volume loss (top). When the proposed volume control method is used, the volume of bubble is preserved regardless of the length of the simulation (bottom). From left to right, each column shows the bubble at t = 0, 0.0625, 0.125, 0.25, 0.5, and 10.0 second. The image on the far right shows a foam structure obtained after raising more than 400 bubbles. AbstractLiquid and gas interactions often produce bubbles that stay for a long time without bursting on the surface, making a dry foam structure. Such long lasting bubbles simulated by the level set method can suffer from a small but steady volume error that accumulates to a visible amount of volume change. We propose to address this problem by using the volume control method. We track the volume change of each connected region, and apply a carefully computed divergence that compensates undesired volume changes. To compute the divergence, we construct a mathematical model of the volume change, choose control strategies that regulate the modeled volume error, and establish methods to compute the control gains that provide robust and fast reduction of the volume error, and (if desired) the control of how the volume changes over time.
Figure 1: When the level set is advected by the BFECC [Dupont and Liu 2003] method, the simulation of a rising bubble produces volume loss (top). When the proposed volume control method is used, the volume of bubble is preserved regardless of the length of the simulation (bottom). From left to right, each column shows the bubble at t = 0, 0.0625, 0.125, 0.25, 0.5, and 10.0 second. The image on the far right shows a foam structure obtained after raising more than 400 bubbles. AbstractLiquid and gas interactions often produce bubbles that stay for a long time without bursting on the surface, making a dry foam structure. Such long lasting bubbles simulated by the level set method can suffer from a small but steady volume error that accumulates to a visible amount of volume change. We propose to address this problem by using the volume control method. We track the volume change of each connected region, and apply a carefully computed divergence that compensates undesired volume changes. To compute the divergence, we construct a mathematical model of the volume change, choose control strategies that regulate the modeled volume error, and establish methods to compute the control gains that provide robust and fast reduction of the volume error, and (if desired) the control of how the volume changes over time. Prior ArtsSignificant progress has been made since the pioneering work on fluid simulation for computer graphics [Kass and Miller 1990;O'Brien and
The NSF Digital Clay project is focused on the design, prototyping, integration, and validation of a computercontrolled physical device capable of taking any of a wide range of possible shapes in response to changes in a digital 3D model or to changes in the pressure exercised upon it by human hands. Although it clearly is a natural and unavoidable evolution of 3D graphical user interfaces, its unprecedented capabilities constitute a major leap in technologies and paradigms for 3D display, for 3D input, and for collaborative 3D design. In this paper, we provide an overview of the Digital Clay project and discuss the challenges, design choices, and initial solutions for a new Finger Sculpting interface designed for the Digital Clay and prototyped using conventional 3D I/O hardware.
We present cinematic quality real-time rendering by integrating ray tracing in Unreal Engine 4. We improve the state-of-the-art performance in GPU ray tracing by an order of magnitude through a combination of engineering work, new ray tracing hardware, hybrid rendering techniques, and novel denoising algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.