Tanzania is the second-largest producer of rice (Oryza sativa) in Eastern, Central, and Southern Africa after Madagascar. Unfortunately, the sector has been performing poorly due to many constraints, including poor agricultural practices and climate variability. In addressing the challenge, the government is making substantial investments to speed the agriculture transformation into a more modernized, commercial, and highly productive and profitable sector. Our objective was to apply a Monte Carlo simulation approach to assess the economic feasibility of alternative rice farming systems operating in Tanzania while considering risk analysis for decision-makers with different risk preferences to make better management decisions. The rice farming systems in this study comprise rice farms using traditional practices and those using some or all of the recommended system of rice intensification (SRI) practices. The overall results show 2% and zero probability of net cash income (NCI) being negative for partial and full SRI adopters, respectively. Meanwhile, farmers using local and improved seeds have 66% and 60% probability of NCI being negative, correspondingly. Rice farms which applied fertilizers in addition to improved seeds have a 21% probability of negative returns. Additionally, net income for rice farms using local seeds was slightly worthwhile when the transaction made during the harvesting period compared to farms applied improved varieties due to a relatively high price for local seeds. These results help to inform policymakers and agencies promoting food security and eradication of poverty on the benefits of encouraging improved rice farming practices in the country. Despite climate variability, in Tanzania, it is still possible for rice farmers to increase food production and income through the application of improved technologies, particularly SRI management practices, which have shown a promising future.
Maize ( Zea mays L. ) is the essential staple in sub-Saharan Africa (SSA) and Tanzania in particular; the crop accounts for over 30% of the food production, 20% of the agricultural gross domestic product (GDP) and over 75% of the cereal consumption. Maize is grown under a higher risk of failure due to the over-dependence rain-fed farming system resulting in low income and food insecurity among maize-based farmers. However, many practices, including conservation agriculture, soil and water conservation, resilient crop varieties, and soil fertility management, are suggested to increase cereal productivity in Tanzania. Improving planting density, and the use of fertilizers are the immediate options recommended by Tanzania's government. In this paper, we evaluate the economic feasibility of the improved planting density (optimized plant population) and N-fertilizer crop management practices on maize net returns in semi-arid and sub-humid agro-ecological zones in the Wami River sub-Basin, Tanzania. We introduce a bio-economic simulation model using Monte Carlo simulation procedures to evaluate the economic viability of risky crop management practices so that the decision-maker can make better management decisions. The study utilizes maize yield data sets from two biophysical cropping system models, namely the APSIM and DSSAT. A total of 83 plots for the semi-arid and 85 plots for the sub-humid agro-ecological zones consisted of this analysis. The crop management practices under study comprise the application of 40 kg N-fertilizer/ha and plant population of 3.3 plants/m 2 . The study finds that the use of improved plant population had the lowest annual net return with fertilizer application fetching the highest return. The two crop models demonstrated a zero probability of negative net returns for farms using fertilizer rates of 40 kg N/ha except for DSSAT, which observed a small probability (0.4%) in the sub-humid area. The optimized plant population presented 16.4% to 26.6% probability of negatives net returns for semi-arid and 14.6% to 30.2% probability of negative net returns for sub-humid zones. The results suggest that the application of fertilizer practices reduces the risks associated with the mean returns, but increasing the plant population has a high probability of economic failure, particularly in the sub-humid zone. Maize sub-sector in Tanzania is projected to continue experiencing a significant decrease in yields and net returns, but there is a high chance that it will be better-off if proper alternatives are employed. Similar studies are needed to explore the potential of interventions highlighted in the ACRP for better decision-making.
This paper presents the lessons learnt from a research project titled "Improving Beef Cattle Productivity for Enhanced Food Security and Efficient Utilization of Natural Resources in the Lake Victoria Basin" which includes Tanzania, Uganda and Rwanda. The key focus is on the implications of land use land cover change and climate variability on the future prospects of beef cattle production in this region. The study utilizes information and data from natural resources and climate components to deduce the impact of land use and land cover changes on climate variability. Additional analysis is conducted to summarize the land use and land cover data to carry out analysis on climate data using the Mann-Kendal test, linear regression and moving averages to reveal patterns of change and trends in annual and seasonal rainfall and temperature. The findings reveal that the study areas of Rwanda, Uganda and Tanzania in the Lake Victoria Basin (LVB) have changed over time following land cover manipulations and land use change, coupled with climate variability. The grazing land has been converted to agriculture and settlements, thereby reducing cattle grazing land which is the cheapest and major feed source for ruminant livestock production. Although * Corresponding author. J. J. Kashaigili et al. 462the cattle population has been on the increase in the same period, it has been largely attributed to the fact that the carrying capacity of available grazing areas had not been attained. The current stocking rates in the LVB reveal that the rangelands are greatly overstocked and overgrazed with land degradation already evidenced in some areas. Climate variability coupled with a decrease in grazing resources is driving unprecedented forage scarcity which is now a major limiting factor to cattle production. Crop cultivation and settlement expansion are major land use types overtaking grazing lands; therefore the incorporation of crop residues into ruminant feeding systems could be a feasible way to curtail rangeland degradation and increase beef cattle production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.