<p style="text-align: justify;"><strong>Aims</strong>: The chloroplast DNA sequence of eight Georgian grape cultivars (Rkatsiteli, Saperavi, Meskhuri Mtsvane, Chkhaveri, Aladasturi, Krakhuna, Tsitska, Tsolikouri) and three French cultivars (Chardonnay, Gouais Blanc, Chasselas), belonging to four different haplogroups (AAA, ATT, ATA, GTA), was determined by Illumina resequencing of genomic DNA. The chloroplast DNA sequence of the Maxxa cultivar was used as reference.</p><p style="text-align: justify;"><strong>Methods and results</strong>: The comparison of sequenced chloroplast DNA gave 100 % identity to Chardonnay and Gouais Blanc, differing from Meskhuri Mtsvane by two insertions/deletions (indels) (all ATA haplogroup). The difference between Chasselas and Saperavi was a single insertion (both ATT haplogroup), while Maxxa, Chkhaveri, Aladasturi, Krakhuna, Tsitska and Tsolikouri were all identical (all members of the GTA haplogroup). Forty-seven identical single nucleotide polymorphisms (SNPs) were detected in the AAA, ATA and ATT haplogroups in comparison to the reference DNA. Additionally, 18 SNPs were detected for the ATT haplogroup, 4 for AAA, 6 for ATA and 11 for both AAA and ATA. The phylogenetic results show that the ATT, AAA and ATA haplogroups are more closely related to each other than to the GTA haplogroup.</p><p style="text-align: justify;"><strong>Conclusion</strong>: In the sequencing data of grape genomic DNA at the coverage (read depth) of chromosomal DNA 30-40, the coverage of chloroplast DNA reaches several thousand reads per bp due to the high number of chloroplast DNA copies in genomic DNA, much higher than necessary for resequencing. Based on these data, a new methodology of simultaneous resequencing of large number of chloroplast DNA was developed without preliminary chloroplast isolation or chloroplast enrichment.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: This method has great potential for expanding both phylogenetic and population genetic information on the evolution of domesticated crops.</p>
Grapevine is the one of the most important fruit species in the world. Comparative genome sequencing of grape cultivars is very important for the interpretation of the grape genome and understanding its evolution. The genomes of four Georgian grape cultivars-Chkhaveri, Saperavi, Meskhetian green, and Rkatsiteli, belonging to different haplogroups, were resequenced. The shotgun genomic libraries of grape cultivars were sequenced on an Illumina HiSeq. Pinot Noir nuclear, mitochondrial, and chloroplast DNA were used as reference. Mitochondrial DNA of Chkhaveri closely matches that of the reference Pinot noir mitochondrial DNA, with the exception of 16 SNPs found in the Chkhaveri mitochondrial DNA. The number of SNPs in mitochondrial DNA from Saperavi, Meskhetian green, and Rkatsiteli was 764, 702, and 822, respectively. Nuclear DNA differs from the reference by 1,800,675 nt in Chkhaveri, 1,063,063 nt in Meskhetian green, 2,174,995 in Saperavi, and 5,011,513 in Rkatsiteli. Unlike mtDNA Pinot noir, chromosomal DNA is closer to the Meskhetian green than to other cultivars. Substantial differences in the number of SNPs in mitochondrial and nuclear DNA of Chkhaveri and Pinot noir cultivars are explained by backcrossing or introgression of their wild predecessors before or during the process of domestication. Annotation of chromosomal DNA of Georgian grape cultivars by MEGANTE, a web-based annotation system, shows 66,745 predicted genes (Chkhaveri-17,409; Saperavi-17,021; Meskhetian green-18,355; and Rkatsiteli-13,960). Among them, 106 predicted genes and 43 pseudogenes of terpene synthase genes were found in chromosomes 12, 18 random (18R), and 19. Four novel TPS genes not present in reference Pinot noir DNA were detected. Two of them-germacrene A synthase (Chromosome 18R) and (-) germacrene D synthase (Chromosome 19) can be identified as putatively full-length proteins. This work performs the first attempt of the comparative whole genome analysis of different haplogroups of Vitis vinifera cultivars. Based on complete nuclear and mitochondrial DNA sequence analysis, hypothetical phylogeny scheme of formation of grape cultivars is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.