The traditional market waste includes household waste. Handling of waste helps reduce the burden of Temporary Disposal Site (TPS). This study aimed to analyze the generation and composition of market waste as well as traders’ perceptions of health protocols in various market classes in Malang Regency. Calculation of the number of samples with the Slovin method. The method of measuring solid waste generation and composition is using SNI 19-3964-1994 for 8 consecutive days. Measurement of generation in weight/volume based on the source of solid waste. Waste sorting is based on the composition of the waste. The maximum market waste generation is in class 1 of 17.402 kg/m2/day in the vegetable stall, while the minimum waste generation is in class 3 of 0.01 kg/m2/day in the plastic stall. The composition of the existing waste is divided into 11 groups, namely compostable solid waste, paper, plastic, diapers, cloth, glass, wood, cans, metal, hazardous waste, and styrofoam. The results of the questionnaire showed that 75% of market traders have implemented the health protocol well.
Traditional markets are commercial areas that produce household-type solid waste so that the generation, composition, and the characteristics of the solid waste in Kepanjen Market will be different. This research is related to the reduction potential to improve solid waste management with the aim of determining the generation, composition, characteristics, collection and the transportation of the solid waste. The data used in this study include operational technical solid waste data, as well as secondary data such as area, number of traders, solid waste management resources, collection facilities, transportation routes, supporting maps. Solid waste generation calculation uses load-count analysis method. Calculation of solid waste composition uses the crossroad method. Calculation of physical characteristics includes specific gravity of solid waste. Calculation of transportation of solid waste uses the Hauled Container System method. Mass balance is analyzed using recovery factor values. The results of the analysis show that the solid waste generation average is 2.94 m3/day, with a specific gravity of 190.03 kg/m3. The highest composition of solid waste is food solid waste by 28.67% and vegetable and fruit solid waste by 22.67%. These components can be used as compost raw materials. The potential reduction with the mass balance method shows that the residue is 201.49 kg/day, reduction scenario can reduce solid waste by 36.06% of the total load that must be transported to the Final Processing Site. The solid waste transport result with the capacity/size of 6-10 m3 of a transport vehicle (arm roll truck) shows that the effective working hours for 8 hours can pick up the solid waste in 1 trip, and the transport fleet can serve other markets.
Salah satu permasalahan dalam proses pembuatan peta skala besar adalah belum terdapat metode ekstraksi objek secara otomatis, sehingga dijitasi secara manual masih dilakukan. Metode ekstraksi objek secara otomatis diharapkan dapat mempercepat pemetaan skala besar. Di Indonesia, pemetaan skala besar digunakan untuk penyusunan Rencana Detil Tata Ruang (RDTR) Kota/ Kabupaten. Objek detil yang terdapat dalam dokumen RDTR tersebut adalah bangunan. Tujuan dilakukan penelitian ini adalah identifikasi atap bangunan menggunakan metode klasifikasi berbasis objek. Data yang digunakan berupa citra foto udara. Dilakukan proses segmentasi menggunakan algoritma multiresolusi dengan parameter segmentasi skala, bentuk, dan kekompakan Setelah proses segmentasi, dilakukan proses klasifikasi menggunakan metode nearest neighbor. Hasil penelitian menunjukkan bahwa masih terdapat kesalahan dalam proses klasifikasi objek. Atap bangunan tidak teridentfikasi secara keseluruhan dalam kelas objek bangunan.
Kekeringan lahan merupakan salah satu permasalahan masyarakat Indonesia yang terjadi pada musim kemarau. Kekeringan lahan mengakibatkan aktivitas pertanian terganggu karena pasokan air terhambat. Salah satu kabupaten yang mengalami kekeringan lahan adalah Kabupaten Lamongan. Penelitian ini bertujuan untuk mengidentifikasi wilayah yang mengalami kekeringan lahan di Kabupaten Lamongan agar dampak kekeringan dapat diminimalisir. Metode identifikasi kekeringan lahan yang digunakan berdasarkan pengolahan data penginderaan jauh, yaitu memanfaatkan data citra satelit Landsat 8 saluran 4 (merah), saluran 5 (Near InfraRed/ NIR), dan saluran 6 (Short Wavelength InfraRed/ SWIR). Sebelum proses pengolahan citra, dilakukan proses penggabungan antar scene (mosaicking). Citra Landsat 8 dipotong sesuai batas administrasi wilayah kabupaten dan diolah berdasarkan algoritma NDDI untuk mengidentifikasi kekeringan lahan. Algoritma yang digunakan terdiri dari parameter tingkat kebasahan air dan tingkat kehijauan vegetasi yang menutupi wilayah Kabupaten Lamongan. Tingkat kebasahan diperoleh dari pengolahan citra menggunakan algoritma NDWI, sedangkan tingkat kerapatan vegetasi diperoleh berdasarkan pengolahan citra menggunakan algoritma NDVI. Hasil pengolahan citra satelit Landsat 8 menunjukkan bahwa Kabupaten Lamongan didominasi oleh tingkat kebasahan kelas rendah sebesar 893,236 Km2 dan kerapatan vegetasi kelas sedang sebesar 691,012 Km2. Adapun hasil identifikasi kekeringan lahan di Kabupaten Lamongan didominasi oleh kelas klasifikasi kekeringan berat sebesar 62,14% atau 1.097,087 Km2 dari total luas area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.