Cinnamomum camphora is one of the most commonly used tree species in landscaping. Improving its ornamental traits, particularly bark and leaf colors, is one of the key breeding goals. The basic helix–loop–helix (bHLH) transcription factors (TFs) are crucial in controlling anthocyanin biosynthesis in many plants. However, their role in C. camphora remains largely unknown. In this study, we identified 150 bHLH TFs (CcbHLHs) using natural mutant C. camphora ‘Gantong 1’, which has unusual bark and leaf colors. Phylogenetic analysis revealed that 150 CcbHLHs were divided into 26 subfamilies which shared similar gene structures and conserved motifs. According to the protein homology analysis, we identified four candidate CcbHLHs that were highly conserved compared to the TT8 protein in A. thaliana. These TFs are potentially involved in anthocyanin biosynthesis in C. camphora. RNA-seq analysis revealed specific expression patterns of CcbHLHs in different tissue types. Furthermore, we verified expression patterns of seven CcbHLHs (CcbHLH001, CcbHLH015, CcbHLH017, CcbHLH022, CcbHLH101, CcbHLH118, and CcbHLH134) in various tissue types at different growth stages using qRT-PCR. This study opens a new avenue for subsequent research on anthocyanin biosynthesis regulated by CcbHLH TFs in C. camphora.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.