Adult articular chondrocytes are surrounded by a pericellular matrix (PCM) to form a chondron. The PCM is rich in hyaluronan, proteoglycans, and collagen II, and it is the exclusive location of collagen VI in articular cartilage. Collagen VI anchors the chondrocyte to the PCM. It has been suggested that co-culture of chondrons with mesenchymal stromal cells (MSCs) might enhance extracellular matrix (ECM) production. This co-culture study investigates whether MSCs help to preserve the PCM and increase ECM production. Primary bovine chondrons or chondrocytes or rat MSCs were cultured alone to establish a baseline level for ECM production. A xenogeneic co-culture monolayer model using rat MSCs (20, 50, and 80%) was established. PCM maintenance and ECM production were assessed by biochemical assays, immunofluorescence, and histological staining. Co-culture of MSCs with chondrons enhanced ECM matrix production, as compared to chondrocyte or chondron only cultures. The ratio 50:50 co-culture of MSCs and chondrons resulted in the highest increase in GAG production (18.5 ± 0.54 pg/cell at day 1 and 11 ± 0.38 pg/cell at day 7 in 50:50 co-culture versus 16.8 ± 0.61 pg/cell at day 1 and 10 ± 0.45 pg/cell at day 7 in chondron monoculture). The co-culture of MSCs with chondrons appeared to decelerate the loss of the PCM as determined by collagen VI expression, whilst the expression of high-temperature requirement serine protease A1 (HtrA1) demonstrated an inverse relationship to that of the collagen VI. Together, this implies that MSCs directly or indirectly inhibited HtrA1 activity and the co-culture of MSCs with chondrons enhanced ECM synthesis and the preservation of the PCM.
Tissue engineering is a relatively new area of research that combines medical, biological, and engineering fundamentals to create tissue-engineered constructs that regenerate, preserve, or slightly increase the functions of tissues. To create mature tissue, the extracellular matrix should be imitated by engineered structures, allow for oxygen and nutrient transmission, and release toxins during tissue repair. Numerous recent studies have been devoted to developing three-dimensional nanostructures for tissue engineering. One of the most effective of these methods is electrospinning. Numerous nanofibrous scaffolds have been constructed over the last few decades for tissue repair and restoration. The current review gives an overview of attempts to construct nanofibrous meshes as tissue-engineered scaffolds for various tissues such as bone, cartilage, cardiovascular, and skin tissues. Also, the current article addresses the recent improvements and difficulties in tissue regeneration using electrospinning.
Recently, there has been an evolution toward a science-supported medicine, which uses replicable results from comprehensive studies to assist clinical decision-making. Reliable techniques are required to improve the consistency and replicability of studies assessing the effectiveness of clinical guidelines, mostly in muscular and therapeutic healthcare. In scientific research, surface electromyography (sEMG) is prevalent but underutilized as a valuable tool for physical medicine and rehabilitation. Other electrophysiological signals (e.g., from electrocardiogram (ECG), electroencephalogram (EEG), and needle EMG) are regularly monitored by medical specialists; nevertheless, the sEMG technique has not yet been effectively implemented in practical medical settings. However, sEMG has considerable clinical promise in evaluating muscle condition and operation; nevertheless, precise data extraction requires the definition of the procedures for tracking and interpreting sEMG and understanding the fundamental biophysics. This review is centered around the application of sEMG in rehabilitation and health monitoring systems, evaluating their technical specifications, including wearability. At first, this study examines methods and systems for tele-rehabilitation applications (i.e., neuromuscular, post-stroke, and sports) based on detecting EMG signals. Then, the fundamentals of EMG signal processing techniques and architectures commonly used to acquire and elaborate EMG signals are discussed. Afterward, a comprehensive and updated survey of wearable devices for sEMG detection, both reported in the scientific literature and on the market, is provided, mainly applied in rehabilitation training and physiological tracking. Discussions and comparisons about the examined solutions are presented to emphasize how rehabilitation professionals can reap the aid of neurobiological detection systems and identify perspectives in this field. These analyses contribute to identifying the key requirements of the next generation of wearable or portable sEMG devices employed in the healthcare field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.