Hepatocellular carcinoma (HCC) is considered as a common malignancy worldwide. Considerable evidence has illustrated that abnormally expressed long noncoding RNAs (lncRNAs) are in a close correlation with the initiation and progression of various tumors, including HCC. LncRNA small nucleolar RNA host gene 22 (SNHG22) has been reported to play important roles in tumor initiation, but its role and mechanism are little known in HCC. In our report, we discovered the high level of SNHG22 in HCC tissues and cells, and the high expression of SNHG22 was correlated with unfavorable clinical outcome in HCC patients. Functional assays implied that SNHG22 deficiency suppressed cell proliferation, migration, invasion, and angiogenesis in vitro. Additionally, it was also confirmed that silenced SNHG22 suppressed tumor growth and angiogenesis in vivo. Mechanistic exploration revealed that SNHG22 recruited DNMT1 to miR-16-5p DNA promoter through EZH2 and inhibited miR-16-5p transcription via DNA methylation. Finally, we verified that the suppression of miR-16-5p countervailed the suppressive effect of SNHG22 deficiency on HCC cell proliferation, migration, invasion, and angiogenesis. Conclusively, this study clarified the SNHG22/EZH2/DNMT1/miR-16-5p axis and revealed that SNHG22 could be an underlying biomarker for HCC.
Regional-scale nitrate and organic contaminants in the shallow groundwater were investigated in the Piedmont region of Taihang Mountains (PRTM), but the information of the microbial communities is limited. However, microorganisms provide a dominated contribution to indicate and degrade the contaminants in the aquifer. Therefore, this study investigates the microbial diversity and contamination microbial indicators of groundwater samples with different contaminated types to better understand the contamination in the PRTM. Seventy-six samples were collected between two rivers in the Tang-Dasha River Basin covering 4000 km2 in the PRTM. High-throughput sequencing was employed to determine the samples’ DNA sequences. The samples were divided into four groups: background (B), nitrate contamination (N), organic contamination (O) and organic-nitrate contamination (O_N) based on the cumulative probability distribution and the Chinese groundwater standard levels of NO3−, COD and DO concentrations. Then, the microbial diversity and contamination microbial indicators were studied in the four groups. The results showed that the O group exhibited lower diversity than other groups. Bacteria detected in these four groups covered 531 families, 987 genera, and 1881 species. Taxonomic assignment analysis indicated that Rhodobacter, Vogesella, Sphingobium dominated in the O_N group, N group, and O group, and accounted for 18.05%, 17.74%, 16.45% in each group at genus level, respectively. Furthermore, these three genera were identified as contamination microbial indicators to the three types of contamination, respectively. The results provide a potential molecular microbiological method to identity contamination in shallow groundwater, and established a strong foundation for further investigation and remediation in the PRTM.
Through testing the pH values of over two thousand groups of groundwater samples from the Pearl River Delta, water acidification was found to be one of the most outstanding groundwater environmental problems in the region. 76.3% of the whole region was covered by the acidic groundwater. The pH value distribution of the groundwater in the region was characterized by obvious regional differences. The groundwater in hilly areas was mainly acidic with the pH values centralized between 5.6 and 6.4; while the groundwater in the plain areas was generally neutral with the pH values between 6.4 and 7.2. The main factors affecting the pH values of the groundwater were acid rains, soils, rivers and seawater tides. In hilly areas, the acid rains had a high infiltration intensity, and the soils had a weak buffering capacity against acid, which played important roles in the low pH values of the groundwater. The increase of pH values of the groundwater was caused by the influences of the thick clay layer in plain areas, the weakened infiltration intensity of acid rains, the frequent water exchanges between rivers and groundwater as well as the invasion of salty tides and seawater into the groundwater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.