There remains tremendous interest in perovskite solar cells (PSCs) in the solar energy field; the certified power conversion efficiency (PCE) now exceeds 20%. Along with research focused on enhancing PCE, studies are also underway concerning PSC commercialization. It is crucial to simplify the fabrication process and reduce the production cost to facilitate commercialization. Herein, we successfully fabricated highly efficient hole-blocking layer (HBL)-free PSCs through vigorously interrupting penetration of hole-transport material (HTM) into fluorine-doped tin oxide by a large grain based-CHNHPbI (MAPbI) film, thereby obtaining a PCE of 18.20%. Our results advance the commercialization of PSCs via a simple fabrication system and a low-cost approach in respect of mass production and recyclability.
Paintable carbon electrode-based perovskite solar cells (PSCs) are of particular interest due to their material and fabrication process costs, as well as their moisture stability. However, printing the carbon paste on the perovskite layer limits the quality of the interface between the perovskite layer and carbon electrode. Herein, an attempt to enhance the performance of the paintable carbon-based PSCs is made using a modified solvent dripping method that involves dripping of the carbon nanotubes (CNTs), which is dispersed in chlorobenzene solution. This method allows CNTs to penetrate into both the perovskite film and carbon electrode, facilitating fast hole transport between the two layers. Furthermore, this method is results in increased open circuit voltage (V ) and fill factor (FF), providing better contact at the perovskite/carbon interfaces. The best devices made with CNT dripping show 13.57% power conversion efficiency and hysteresis-free performance.
Hexagonal β-NaYF4:Yb(3+), Er(3+) nanoprisms, successfully prepared using a hydrothermal method, were incorporated into CH3NH3PbI3 perovskite solar cells (PSCs) as an upconverting mesoporous layer. Due to their near-infrared (NIR) sunlight harvesting, the PSCs based on the upconverting mesoporous layer exhibited a power conversion efficiency of 16.0%, an increase of 13.7% compared with conventional TiO2 nanoparticle-based PSCs (14.1%). This result suggests that the hexagonal β-NaYF4:Yb(3+), Er(3+) nanoprisms expand the absorption range of the PSC via upconversion photoluminescence, leading to an enhancement of the photocurrent.
The power conversion efficiency (PCE) of perovskite solar cells (PSCs) has now exceeded 20%; thus, research focus has shifted to establishing the foundations for commercialization. One of the pivotal themes is to curtail the overall fabrication time, to reduce unit cost, and mass-produce PSCs. Additionally, energy dissipation during the thermal annealing (TA) stage must be minimized by realizing a genuine low-temperature (LT) process. Here, tin oxide (SnO ) thin films (TFs) are formulated at extremely high speed, within 5 min, under an almost room-temperature environment (<50 °C), using atmospheric Ar/O plasma energy (P-SnO ) and are applied as an electron transport layer of a "n-i-p"-type planar PSC. Compared with a thermally annealed SnO TF (T-SnO ), the P-SnO TF yields a more even surface but also outstanding electrical conductivity with higher electron mobility and a lower number of charge trap sites, consequently achieving a superior PCE of 19.56% in P-SnO -based PSCs. These findings motivate the use of a plasma strategy to fabricate various metal oxide TFs using the sol-gel route.
Perovskite solar cells (PSCs) are of great interest in current photovoltaic research due to their extraordinary power conversion efficiency of ≈20% and boundless potentialities. The high efficiency has been mostly obtained from TiO2‐based PSCs, where TiO2 is utilized as a hole‐blocking, mesoporous layer. However, trapped charges and the light‐induced photocatalytic effect of TiO2 seriously degrade the perovskite and preclude PSCs from being immediately commercialized. Herein, a simplified PSC is successfully fabricated by eliminating the problematic TiO2 layers, using instead a fluorine‐doped tin oxide (FTO)/perovskite/hole–conductor/Au design. Simultaneously, the sluggish charge extraction at the FTO/perovskite interface is overcome by modifying the surface of the FTO to a porous structure using electrochemical etching. This surface engineering enables a substantial increase in the photocurrent density and mitigation of the hysteretic behavior of the pristine FTO‐based PSC; a remarkable 19.22% efficiency with a low level of hysteresis is obtained. This performance is closely approaching that of conventional PSCs and may facilitate their commercialization due to improved convenience, lower cost, greater stability, and potentially more efficient mass production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.