In most real-world hydrogeologic situations, natural heterogeneity and measurement errors introduce major sources of uncertainty in the solution of the inverse problem. The Bayesian Maximum Entropy (BME) method of modern geostatistics offers an efficient solution to the inverse problem by first assimilating various physical knowledge bases (hydrologic laws, water table elevation data, uncertain hydraulic resistivity measurements, etc.) and then producing robust estimates of the subsurface variables across space. We present specific methods for implementing the BME conceptual framework to solve an inverse problem involving Darcy's law for subsurface flow. We illustrate one of these methods in the case of a synthetic one-dimensional case study concerned with the estimation of hydraulic resistivity conditioned on soft data and hydraulic head measurements. The BME framework processes the physical knowledge contained in Darcy's law and generates accurate estimates of hydraulic resistivity across space. The optimal distribution of hard and soft data needed to minimize the associated estimation error at a specified sampling cost is determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.