This work shows an alternative surface cleaning method for c-Si wafers to replace the standard chemical procedures as RCA or HNO 3 which involve hazardous chemicals or unstable processes. The method consists in a high-temperature oxidation treatment (HTO) performed in a classical tube furnace that incorporates organic and metal particles present on the c-Si surfaces in the growing SiO 2 layer. The result is as a reliable pre-treatment method for obtaining less defective c-Si surfaces ready for solar cell fabrication after SiO 2 removal. To test the surface passivation quality obtained with our alternative cleaning method, we grow amorphous silicon (a-Si:H) layers by plasma enhanced chemical vapor deposition on both sides of the c-Si wafer and systematically compare the effective carrier lifetime (τ eff) and implied V OC (iV oc) to the wafer treated with the standard cleaning in our laboratory. We optimize HTO treatment time reaching τ eff of ∼6 ms and iV oc of 721 mV for the best sample. We ascribe the improved passivation quality using HTO to two concurrent factors. Firstly, the encapsulation of defects into SiO 2 layer that is then etched prior a-Si:H deposition and secondly, to modification of the pyramids' morphology that facilitates the surface passivation. SEM pictures and reflection measurements support the latter hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.